IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i8p3001-3015.html
   My bibliography  Save this article

Spatiotemporal and spatial threshold models for relating UV exposures and skin cancer in the central United States

Author

Listed:
  • Hatfield, Laura A.
  • Hoffbeck, Richard W.
  • Alexander, Bruce H.
  • Carlin, Bradley P.

Abstract

The exact mechanisms relating exposure to ultraviolet (UV) radiation and elevated risk of skin cancer remain the subject of debate. For example, there is disagreement on whether the main risk factor is duration of the exposure, its intensity, or some combination of both. There is also uncertainty regarding the form of the dose-response curve, with many authors believing only exposures exceeding a given (but unknown) threshold are important. This paper explores methods to estimate such thresholds using hierarchical spatial logistic models based on a sample of a cohort of x-ray technologists for whom self-reports of time spent in the sun and numbers of blistering sunburns in childhood are available. A preliminary goal is to explore the temporal pattern of UV exposure and its gradient. Changes would imply that identical exposure self-reports from different calendar years may correspond to differing cancer risks.

Suggested Citation

  • Hatfield, Laura A. & Hoffbeck, Richard W. & Alexander, Bruce H. & Carlin, Bradley P., 2009. "Spatiotemporal and spatial threshold models for relating UV exposures and skin cancer in the central United States," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3001-3015, June.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3001-3015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00474-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montserrat Fuentes & Hae-Ryoung Song & Sujit K. Ghosh & David M. Holland & Jerry M. Davis, 2006. "Spatial Association between Speciated Fine Particles and Mortality," Biometrics, The International Biometric Society, vol. 62(3), pages 855-863, September.
    2. Banerjee, Sudipto & Gelfand, Alan E., 2006. "Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1487-1501, December.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. LeSage, James & Banerjee, Sudipto & Fischer, Manfred M. & Congdon, Peter, 2009. "Spatial statistics: Methods, models & computation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2781-2785, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura F. Boehm Vock & Brian J. Reich & Montserrat Fuentes & Francesca Dominici, 2015. "Spatial variable selection methods for investigating acute health effects of fine particulate matter components," Biometrics, The International Biometric Society, vol. 71(1), pages 167-177, March.
    2. Haijun Ma & Bradley P. Carlin & Sudipto Banerjee, 2010. "Hierarchical and Joint Site-Edge Methods for Medicare Hospice Service Region Boundary Analysis," Biometrics, The International Biometric Society, vol. 66(2), pages 355-364, June.
    3. Choi, Jungsoon & Fuentes, Montserrat & Reich, Brian J., 2009. "Spatial-temporal association between fine particulate matter and daily mortality," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2989-3000, June.
    4. Andrew M. Raim & Scott H. Holan & Jonathan R. Bradley & Christopher K. Wikle, 2021. "Spatio-temporal change of support modeling with R," Computational Statistics, Springer, vol. 36(1), pages 749-780, March.
    5. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    6. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    7. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    8. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    9. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    10. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    11. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    12. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    13. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    14. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    15. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    16. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    17. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    18. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    19. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    20. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3001-3015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.