IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i8p2831-2842.html
   My bibliography  Save this article

Approximate methods in Bayesian point process spatial models

Author

Listed:
  • Hossain, Md. Monir
  • Lawson, Andrew B.

Abstract

A range of point process models which are commonly used in spatial epidemiology applications for the increased incidence of disease are compared. The models considered vary from approximate methods to an exact method. The approximate methods include the Poisson process model and methods that are based on discretization of the study window. The exact method includes a marked point process model, i.e., the conditional logistic model. Apart from analyzing a real dataset (Lancashire larynx cancer data), a small simulation study is also carried out to examine the ability of these methods to recover known parameter values. The main results are as follows. In estimating the distance effect of larynx cancer incidences from the incinerator, the conditional logistic model and the binomial model for the discretized window perform relatively well. In explaining the spatial heterogeneity, the Poisson model (or the log Gaussian Cox process model) for the discretized window produces the best estimate.

Suggested Citation

  • Hossain, Md. Monir & Lawson, Andrew B., 2009. "Approximate methods in Bayesian point process spatial models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2831-2842, June.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2831-2842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00288-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    2. Mark Berman & T. Rolf Turner, 1992. "Approximating Point Process Likelihoods with Glim," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 31-38, March.
    3. Fuentes, Montserrat, 2007. "Approximate Likelihood for Large Irregularly Spaced Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 321-331, March.
    4. Peter J. Diggle & Barry S. Rowlingson, 1994. "A Conditional Approach to Point Process Modelling of Elevated Risk," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(3), pages 433-440, May.
    5. Peter J. Diggle, 1990. "A Point Process Modelling Approach to Raised Incidence of a Rare Phenomenon in the Vicinity of a Prespecified Point," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 153(3), pages 349-362, May.
    6. Lawson, A. B., 1992. "GLIM and normalising constant models in spatial and directional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 13(3), pages 331-348, April.
    7. Peter Diggle & Sara Morris & Paul Elliott & Gavin Shaddick, 1997. "Regression Modelling of Disease Risk in Relation to Point Sources," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 491-505, September.
    8. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    9. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18, January.
    10. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athanasios Christou Micheas, 2014. "Hierarchical Bayesian modeling of marked non-homogeneous Poisson processes with finite mixtures and inclusion of covariate information," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2596-2615, December.
    2. Fernández-Alcalá, R.M. & Navarro-Moreno, J. & Ruiz-Molina, J.C., 2009. "Statistical inference for doubly stochastic multichannel Poisson processes: A PCA approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4322-4331, October.
    3. Su Yun Kang & James McGree & Kerrie Mengersen, 2013. "The Impact of Spatial Scales and Spatial Smoothing on the Outcome of Bayesian Spatial Model," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-14, October.
    4. LeSage, James & Banerjee, Sudipto & Fischer, Manfred M. & Congdon, Peter, 2009. "Spatial statistics: Methods, models & computation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2781-2785, June.
    5. Shengde Liang & Sudipto Banerjee & Bradley P. Carlin, 2009. "Bayesian Wombling for Spatial Point Processes," Biometrics, The International Biometric Society, vol. 65(4), pages 1243-1253, December.
    6. Bivand, Roger & Gómez-Rubio, Virgilio & Rue, Håvard, 2015. "Spatial Data Analysis with R-INLA with Some Extensions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i20).
    7. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    2. Álvaro Briz‐Redón & Jorge Mateu & Francisco Montes, 2022. "Identifying crime generators and spatially overlapping high‐risk areas through a nonlinear model: A comparison between three cities of the Valencian region (Spain)," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 97-120, February.
    3. Lawrence Kazembe, 2009. "Modelling individual fertility levels in Malawian women: a spatial semiparametric regression model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(2), pages 237-255, July.
    4. Ren, Qian & Banerjee, Sudipto & Finley, Andrew O. & Hodges, James S., 2011. "Variational Bayesian methods for spatial data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3197-3217, December.
    5. Liang, Shengde & Banerjee, Sudipto & Bushhouse, Sally & Finley, Andrew O. & Carlin, Bradley P., 2008. "Hierarchical multiresolution approaches for dense point-level breast cancer treatment data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2650-2668, January.
    6. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    7. Alexandre Rodrigues & Peter Diggle & Renato Assuncao, 2010. "Semiparametric approach to point source modelling in epidemiology and criminology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 533-542, May.
    8. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    9. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    10. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    11. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    12. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    13. Andrew Finley & Sudipto Banerjee & Alan Gelfand, 2012. "Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes," Journal of Geographical Systems, Springer, vol. 14(1), pages 29-47, January.
    14. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    15. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    16. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    17. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    18. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    19. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    20. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2831-2842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.