IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i8p2989-3000.html
   My bibliography  Save this article

Spatial-temporal association between fine particulate matter and daily mortality

Author

Listed:
  • Choi, Jungsoon
  • Fuentes, Montserrat
  • Reich, Brian J.

Abstract

Fine particulate matter (PM2.5) is a mixture of pollutants that has been linked to serious health problems, including premature mortality. Since the chemical composition of PM2.5 varies across space and time, the association between PM2.5 and mortality could also change with space and season. A statistical multi-stage Bayesian framework is developed and implemented, which provides a very broad and flexible approach to studying the spatiotemporal associations between mortality and population exposure to daily PM2.5 mass, while accounting for different sources of uncertainty. The first stage of the framework maps ambient PM2.5 air concentrations using all available monitoring data (IMPROVE and FRM) and an air quality model (CMAQ) at different spatial and temporal scales. The second stage of the framework examines the spatial temporal relationships between the health end-points and the exposures to PM2.5 by introducing a spatial-temporal generalized Poisson regression model. A method to adjust for time-varying confounders such as seasonal trends is proposed. A common seasonal trends model uses a fixed number of basis functions to account for these confounders, but the results can be sensitive to the number of basis functions. Thus, instead the number of the basis functions is treated as an unknown parameter in the Bayesian model, and a space-time stochastic search variable selection approach is used. The framework is illustrated using a data set in North Carolina for the year 2001.

Suggested Citation

  • Choi, Jungsoon & Fuentes, Montserrat & Reich, Brian J., 2009. "Spatial-temporal association between fine particulate matter and daily mortality," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2989-3000, June.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2989-3000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00289-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ostro, B.D. & Lipsett, M.J. & Wiener, M.B. & Selner, J.C., 1991. "Asthmatic responses to airborne acid aerosols," American Journal of Public Health, American Public Health Association, vol. 81(6), pages 694-702.
    2. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    4. Montserrat Fuentes & Hae-Ryoung Song & Sujit K. Ghosh & David M. Holland & Jerry M. Davis, 2006. "Spatial Association between Speciated Fine Particles and Mortality," Biometrics, The International Biometric Society, vol. 62(3), pages 855-863, September.
    5. Dominici F. & Daniels M. & Zeger S. L. & Samet J. M., 2002. "Air Pollution and Mortality: Estimating Regional and National Dose-Response Relationships," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 100-111, March.
    6. Duncan Lee & Gavin Shaddick, 2007. "Time-Varying Coefficient Models for the Analysis of Air Pollution and Health Outcome Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1253-1261, December.
    7. Gotway C.A. & Young L.J., 2002. "Combining Incompatible Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 632-648, June.
    8. Montserrat Fuentes & Adrian E. Raftery, 2005. "Model Evaluation and Spatial Interpolation by Bayesian Combination of Observations with Outputs from Numerical Models," Biometrics, The International Biometric Society, vol. 61(1), pages 36-45, March.
    9. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dani Gamerman & Luigi Ippoliti & Pasquale Valentini, 2022. "A dynamic structural equation approach to estimate the short‐term effects of air pollution on human health," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 739-769, June.
    2. Zhenzhen Zhang & Thomas M. Braun & Karen E. Peterson & Howard Hu & Martha M. Téllez-Rojo & Brisa N. Sánchez, 2018. "Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 634-650, December.
    3. LeSage, James & Banerjee, Sudipto & Fischer, Manfred M. & Congdon, Peter, 2009. "Spatial statistics: Methods, models & computation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2781-2785, June.
    4. Laura F. Boehm Vock & Brian J. Reich & Montserrat Fuentes & Francesca Dominici, 2015. "Spatial variable selection methods for investigating acute health effects of fine particulate matter components," Biometrics, The International Biometric Society, vol. 71(1), pages 167-177, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhe Huang & Emily Ying-Yang Chan & Chi-Shing Wong & Sida Liu & Benny Chung-Ying Zee, 2022. "Health Disparity Resulting from the Effect of Built Environment on Temperature-Related Mortality in a Subtropical Urban Setting," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    2. Andrew M. Raim & Scott H. Holan & Jonathan R. Bradley & Christopher K. Wikle, 2021. "Spatio-temporal change of support modeling with R," Computational Statistics, Springer, vol. 36(1), pages 749-780, March.
    3. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    4. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    5. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    6. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    7. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    8. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    9. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    10. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    11. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    12. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    13. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    14. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    15. Peter Congdon, 2011. "The Spatial Pattern of Suicide in the US in Relation to Deprivation, Fragmentation and Rurality," Urban Studies, Urban Studies Journal Limited, vol. 48(10), pages 2101-2122, August.
    16. Shadi Rahimzadeh & Beata Burczynska & Alireza Ahmadvand & Ali Sheidaei & Sara Khademioureh & Forough Pazhuheian & Sahar Saeedi Moghaddam & James Bentham & Farshad Farzadfar & Mariachiara Di Cesare, 2021. "Geographical and socioeconomic inequalities in female breast cancer incidence and mortality in Iran: A Bayesian spatial analysis of registry data," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-16, March.
    17. Volker Schmid & Leonhard Held, 2004. "Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data," Biometrics, The International Biometric Society, vol. 60(4), pages 1034-1042, December.
    18. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    19. Marcus L. Nascimento & Kelly C. M. Gonçalves & Mario Jorge Mendonça, 2023. "Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 29-47, June.
    20. Corey Sparks & Joey Campbell, 2014. "An Application of Bayesian Methods to Small Area Poverty Rate Estimates," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 33(3), pages 455-477, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2989-3000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.