Incorporating covariate information in the covariance structure of misaligned spatial data
Author
Abstract
Suggested Citation
DOI: 10.1002/env.2623
Download full text from publisher
References listed on IDEAS
- Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
- Joaquim Henriques Vianna Neto & Alexandra M. Schmidt & Peter Guttorp, 2014. "Accounting for spatially varying directional effects in spatial covariance structures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 103-122, January.
- Wenceslao González‐Manteiga & Rosa M. Crujeiras & Matthias Katzfuss & Noel Cressie, 2012. "Bayesian hierarchical spatio‐temporal smoothing for very large datasets," Environmetrics, John Wiley & Sons, Ltd., vol. 23(1), pages 94-107, February.
- Soutir Bandyopadhyay & Suhasini Subba Rao, 2017. "A test for stationarity for irregularly spaced spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 95-123, January.
- Kang, Emily L. & Liu, Desheng & Cressie, Noel, 2009. "Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3016-3032, June.
- Huang, Hsin-Cheng & Cressie, Noel, 1996. "Spatio-temporal prediction of snow water equivalent using the Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 22(2), pages 159-175, July.
- Mark D. Risser & Catherine A. Calder, 2015. "Regression‐based covariance functions for nonstationary spatial modeling," Environmetrics, John Wiley & Sons, Ltd., vol. 26(4), pages 284-297, June.
- Jenný Brynjarsdóttir & L. Mark Berliner, 2014. "Dimension-Reduced Modeling of Spatio-Temporal Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1647-1659, December.
- Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
- Hai Nguyen & Noel Cressie & Amy Braverman, 2012. "Spatial Statistical Data Fusion for Remote Sensing Applications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1004-1018, September.
- Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
- Matthias Katzfuss, 2013. "Bayesian nonstationary spatial modeling for very large datasets," Environmetrics, John Wiley & Sons, Ltd., vol. 24(3), pages 189-200, May.
- Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
- Finley, Andrew O. & Sang, Huiyan & Banerjee, Sudipto & Gelfand, Alan E., 2009. "Improving the performance of predictive process modeling for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2873-2884, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
- Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
- Matthias Katzfuss, 2017. "A Multi-Resolution Approximation for Massive Spatial Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 201-214, January.
- Ryan J. Parker & Brian J. Reich & Jo Eidsvik, 2016. "A Fused Lasso Approach to Nonstationary Spatial Covariance Estimation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 569-587, September.
- K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
- Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
- Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
- Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
- Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
- Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
- Mahdi Hosseinpouri & Majid Jafari Khaledi, 2019. "An area-specific stick breaking process for spatial data," Statistical Papers, Springer, vol. 60(1), pages 199-221, February.
- Si Cheng & Bledar A. Konomi & Georgios Karagiannis & Emily L. Kang, 2024. "Recursive nearest neighbor co‐kriging models for big multi‐fidelity spatial data sets," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.
- Jialuo Liu & Tingjin Chu & Jun Zhu & Haonan Wang, 2022. "Large spatial data modeling and analysis: A Krylov subspace approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1115-1143, September.
- Candace Berrett & William F. Christensen & Stephan R. Sain & Nathan Sandholtz & David W. Coats & Claudia Tebaldi & Hedibert F. Lopes, 2020. "Modeling sea‐level processes on the U.S. Atlantic Coast," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
- Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
- Cécile Hardouin & Noel Cressie, 2018. "Two-scale spatial models for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 1-24, March.
- Waley W. J. Liang & Herbert K. H. Lee, 2019. "Bayesian nonstationary Gaussian process models via treed process convolutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 797-818, September.
- Sandy Burden & Noel Cressie & David G. Steel, 2015. "The SAR Model for Very Large Datasets: A Reduced Rank Approach," Econometrics, MDPI, vol. 3(2), pages 1-22, May.
- Hang Zhang & Yong Liu & Dongyang Yang & Guanpeng Dong, 2022. "PM 2.5 Concentrations Variability in North China Explored with a Multi-Scale Spatial Random Effect Model," IJERPH, MDPI, vol. 19(17), pages 1-14, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:6:n:e2623. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.