IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v11y2014i1p883-902d32039.html
   My bibliography  Save this article

Disease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach

Author

Listed:
  • Mohammadreza Mohebbi

    (Biostatistics Unit, Faculty of Health, Deakin University, Melbourne 3125, Australia
    Department of Epidemiology and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3000, Australia)

  • Rory Wolfe

    (Department of Epidemiology and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3000, Australia)

  • Andrew Forbes

    (Department of Epidemiology and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3000, Australia)

Abstract

This paper applies the generalised linear model for modelling geographical variation to esophageal cancer incidence data in the Caspian region of Iran. The data have a complex and hierarchical structure that makes them suitable for hierarchical analysis using Bayesian techniques, but with care required to deal with problems arising from counts of events observed in small geographical areas when overdispersion and residual spatial autocorrelation are present. These considerations lead to nine regression models derived from using three probability distributions for count data: Poisson, generalised Poisson and negative binomial, and three different autocorrelation structures. We employ the framework of Bayesian variable selection and a Gibbs sampling based technique to identify significant cancer risk factors. The framework deals with situations where the number of possible models based on different combinations of candidate explanatory variables is large enough such that calculation of posterior probabilities for all models is difficult or infeasible. The evidence from applying the modelling methodology suggests that modelling strategies based on the use of generalised Poisson and negative binomial with spatial autocorrelation work well and provide a robust basis for inference.

Suggested Citation

  • Mohammadreza Mohebbi & Rory Wolfe & Andrew Forbes, 2014. "Disease Mapping and Regression with Count Data in the Presence of Overdispersion and Spatial Autocorrelation: A Bayesian Model Averaging Approach," IJERPH, MDPI, vol. 11(1), pages 1-20, January.
  • Handle: RePEc:gam:jijerp:v:11:y:2014:i:1:p:883-902:d:32039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/11/1/883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/11/1/883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioannis Ntzoufras & Athanassios Katsis & Dimitris Karlis, 2005. "Bayesian Assessment of the Distribution of Insurance Claim Counts Using Reversible Jump MCMC," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 90-108.
    2. Haining, Robert & Law, Jane & Griffith, Daniel, 2009. "Modelling small area counts in the presence of overdispersion and spatial autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2923-2937, June.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    4. Kang, Emily L. & Liu, Desheng & Cressie, Noel, 2009. "Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3016-3032, June.
    5. Kelsall J. & Eld J.W., 2002. "Modeling Spatial Variation in Disease Risk: A Geostatistical Approach," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 692-701, September.
    6. Cameron, A Colin & Windmeijer, Frank A G, 1996. "R-Squared Measures for Count Data Regression Models with Applications to Health-Care Utilization," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 209-220, April.
    7. Martin Feldkircher & Stefan Zeugner, 2009. "Benchmark Priors Revisited: On Adaptive Shrinkage and the Supermodel Effect in Bayesian Model Averaging," IMF Working Papers 2009/202, International Monetary Fund.
    8. Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
    9. Ntzoufras, Ioannis, 2002. "Gibbs Variable Selection using BUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chawarat Rotejanaprasert & Andrew B. Lawson, 2018. "A Bayesian Quantile Modeling for Spatiotemporal Relative Risk: An Application to Adverse Risk Detection of Respiratory Diseases in South Carolina, USA," IJERPH, MDPI, vol. 15(9), pages 1-15, September.
    2. Chien-Chou Chen & Guo-Jun Lo & Ta-Chien Chan, 2022. "Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-12, May.
    3. I. Gede Nyoman Mindra Jaya & Budhi Handoko & Yudhie Andriyana & Anna Chadidjah & Farah Kristiani & Mila Antikasari, 2023. "Multivariate Bayesian Semiparametric Regression Model for Forecasting and Mapping HIV and TB Risks in West Java, Indonesia," Mathematics, MDPI, vol. 11(17), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasan, Iftekhar & Horvath, Roman & Mares, Jan, 2020. "Finance and wealth inequality," Journal of International Money and Finance, Elsevier, vol. 108(C).
    2. Aart Kraay & Norikazu Tawara, 2013. "Can specific policy indicators identify reform priorities?," Journal of Economic Growth, Springer, vol. 18(3), pages 253-283, September.
    3. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    4. repec:zbw:bofrdp:urn:nbn:fi:bof-201508211364 is not listed on IDEAS
    5. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    6. João M. Sousa & Ricardo M. Sousa, 2019. "Asset Returns Under Model Uncertainty: Evidence from the Euro Area, the US and the UK," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 139-176, June.
    7. Domenico Giannone & Michele Lenza & Lucrezia Reichlin, 2011. "Market Freedom and the Global Recession," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 59(1), pages 111-135, April.
    8. Katrin Wölfel & Christoph S. Weber, 2017. "Searching for the Fed’s reaction function," Empirical Economics, Springer, vol. 52(1), pages 191-227, February.
    9. Iftekhar Hasan & Roman Horvath & Jan Mares, 2018. "What Type of Finance Matters for Growth? Bayesian Model Averaging Evidence," The World Bank Economic Review, World Bank Group, vol. 32(2), pages 383-409.
    10. Branimir Jovanovic, 2017. "Growth forecast errors and government investment and consumption multipliers," International Review of Applied Economics, Taylor & Francis Journals, vol. 31(1), pages 83-107, January.
    11. Rashidi, Parinaz & Wang, Tiejun & Skidmore, Andrew & Mehdipoor, Hamed & Darvishzadeh, Roshanak & Ngene, Shadrack & Vrieling, Anton & Toxopeus, Albertus G., 2016. "Elephant poaching risk assessed using spatial and non-spatial Bayesian models," Ecological Modelling, Elsevier, vol. 338(C), pages 60-68.
    12. Mahdi Hosseinpouri & Majid Jafari Khaledi, 2019. "An area-specific stick breaking process for spatial data," Statistical Papers, Springer, vol. 60(1), pages 199-221, February.
    13. Roman Horvath & Eva Horvatova & Maria Siranova, 2017. "Financial Development, Rule of Law and Wealth Inequality: Bayesian Model Averaging Evidence," Working Papers 368, Leibniz Institut für Ost- und Südosteuropaforschung (Institute for East and Southeast European Studies).
    14. repec:bof:bofrdp:urn:nbn:fi:bof-201508211364 is not listed on IDEAS
    15. Anastasia Dimiski, 2020. "Factors that affect Students’ performance in Science: An application using Gini-BMA methodology in PISA 2015 dataset," Working Papers 2004, University of Guelph, Department of Economics and Finance.
    16. Hong-Ding Yang & Yun-Huan Lee & Che-Yang Lin, 2023. "On Study of the Occurrence of Earth-Size Planets in Kepler Mission Using Spatial Poisson Model," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    17. LeSage, James & Banerjee, Sudipto & Fischer, Manfred M. & Congdon, Peter, 2009. "Spatial statistics: Methods, models & computation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2781-2785, June.
    18. Kourtellos, Andros & Stylianou, Ioanna & Tan, Chih Ming, 2013. "Failure to launch? The role of land inequality in transition delays," European Economic Review, Elsevier, vol. 62(C), pages 98-113.
    19. K. Benkovskis & B. Bluhm & E. Bobeica & C. Osbat & S. Zeugner, 2020. "What drives export market shares? It depends! An empirical analysis using Bayesian model averaging," Empirical Economics, Springer, vol. 59(2), pages 817-869, August.
    20. Man, Georg, 2015. "Competition and the growth of nations: International evidence from Bayesian model averaging," Economic Modelling, Elsevier, vol. 51(C), pages 491-501.
    21. Thomas Suesse, 2018. "Estimation of spatial autoregressive models with measurement error for large data sets," Computational Statistics, Springer, vol. 33(4), pages 1627-1648, December.
    22. Zhang Hongmei & Gan Jianjun, 2012. "A Reproducing Kernel-Based Spatial Model in Poisson Regressions," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:11:y:2014:i:1:p:883-902:d:32039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.