Author
Listed:
- Samorodnitsky, Sarah
- Wendt, Chris H.
- Lock, Eric F.
Abstract
Integrative factorization methods for multi-omic data estimate factors explaining biological variation. Factors can be treated as covariates to predict an outcome and the factorization can be used to impute missing values. However, no available methods provide a comprehensive framework for statistical inference and uncertainty quantification for these tasks. A novel framework, Bayesian Simultaneous Factorization (BSF), is proposed to decompose multi-omics variation into joint and individual structures simultaneously within a probabilistic framework. BSF uses conjugate normal priors and the posterior mode of this model can be estimated by solving a structured nuclear norm-penalized objective that also achieves rank selection and motivates the choice of hyperparameters. BSF is then extended to simultaneously predict a continuous or binary phenotype while estimating latent factors, termed Bayesian Simultaneous Factorization and Prediction (BSFP). BSF and BSFP accommodate concurrent imputation, i.e., imputation during the model-fitting process, and full posterior inference for missing data, including “blockwise” missingness. It is shown via simulation that BSFP is competitive in recovering latent variation structure, and demonstrate the importance of accounting for uncertainty in the estimated factorization within the predictive model. The imputation performance of BSF is examined via simulation under missing-at-random and missing-not-at-random assumptions. Finally, BSFP is used to predict lung function based on the bronchoalveolar lavage metabolome and proteome from a study of HIV-associated obstructive lung disease, revealing multi-omic patterns related to lung function decline and a cluster of patients with obstructive lung disease driven by shared metabolomic and proteomic abundance patterns.
Suggested Citation
Samorodnitsky, Sarah & Wendt, Chris H. & Lock, Eric F., 2024.
"Bayesian simultaneous factorization and prediction using multi-omic data,"
Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
Handle:
RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000586
DOI: 10.1016/j.csda.2024.107974
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000586. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.