IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.06354.html
   My bibliography  Save this paper

When it counts -- Econometric identification of the basic factor model based on GLT structures

Author

Listed:
  • Sylvia Fruhwirth-Schnatter
  • Darjus Hosszejni
  • Hedibert Freitas Lopes

Abstract

Despite the popularity of factor models with sparse loading matrices, little attention has been given to formally address identifiability of these models beyond standard rotation-based identification such as the positive lower triangular (PLT) constraint. To fill this gap, we review the advantages of variance identification in sparse factor analysis and introduce the generalized lower triangular (GLT) structures. We show that the GLT assumption is an improvement over PLT without compromise: GLT is also unique but, unlike PLT, a non-restrictive assumption. Furthermore, we provide a simple counting rule for variance identification under GLT structures, and we demonstrate that within this model class the unknown number of common factors can be recovered in an exploratory factor analysis. Our methodology is illustrated for simulated data in the context of post-processing posterior draws in Bayesian sparse factor analysis.

Suggested Citation

  • Sylvia Fruhwirth-Schnatter & Darjus Hosszejni & Hedibert Freitas Lopes, 2023. "When it counts -- Econometric identification of the basic factor model based on GLT structures," Papers 2301.06354, arXiv.org.
  • Handle: RePEc:arx:papers:2301.06354
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.06354
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:bfi:wpaper:2014-014 is not listed on IDEAS
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    4. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    5. Benjamin Williams, 2020. "Identification of the linear factor model," Econometric Reviews, Taylor & Francis Journals, vol. 39(1), pages 92-109, January.
    6. Sirio Legramanti & Daniele Durante & David B Dunson, 2020. "Bayesian cumulative shrinkage for infinite factorizations," Biometrika, Biometrika Trust, vol. 107(3), pages 745-752.
    7. Bekker, Paul A., 1989. "Identification in restricted factor models and the evaluation of rank conditions," Journal of Econometrics, Elsevier, vol. 41(1), pages 5-16, May.
    8. Sylvia Kaufmann & Christian Schumacher, 2017. "Identifying relevant and irrelevant variables in sparse factor models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1123-1144, September.
    9. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
    10. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    11. Kaufmann, Sylvia & Schumacher, Christian, 2019. "Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification," Journal of Econometrics, Elsevier, vol. 210(1), pages 116-134.
    12. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    13. A. Bhattacharya & D. B. Dunson, 2011. "Sparse Bayesian infinite factor models," Biometrika, Biometrika Trust, vol. 98(2), pages 291-306.
    14. Darjus Hosszejni & Sylvia Fruhwirth-Schnatter, 2022. "Cover It Up! Bipartite Graphs Uncover Identifiability in Sparse Factor Analysis," Papers 2211.00671, arXiv.org, revised Nov 2022.
    15. Carvalho, Carlos M. & Chang, Jeffrey & Lucas, Joseph E. & Nevins, Joseph R. & Wang, Quanli & West, Mike, 2008. "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1438-1456.
    16. Joshua Chan & Roberto Leon-Gonzalez & Rodney W. Strachan, 2018. "Invariant Inference and Efficient Computation in the Static Factor Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 819-828, April.
    17. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    18. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2016. "Bayesian analysis of static and dynamic factor models: An ex-post approach towards the rotation problem," Journal of Econometrics, Elsevier, vol. 192(1), pages 190-206.
    19. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    20. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvia Kaufmann & Markus Pape, 2024. "A geometric approach to factor model identification," Working Papers 24.06, Swiss National Bank, Study Center Gerzensee.
    2. João Pedro Coli de Souza Monteneri Nacinben & Márcio Laurini, 2024. "Multivariate Stochastic Volatility Modeling via Integrated Nested Laplace Approximations: A Multifactor Extension," Econometrics, MDPI, vol. 12(1), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
    2. Sylvia Fruhwirth-Schnatter, 2023. "Generalized Cumulative Shrinkage Process Priors with Applications to Sparse Bayesian Factor Analysis," Papers 2303.00473, arXiv.org.
    3. Simon Beyeler & Sylvia Kaufmann, 2016. "Factor augmented VAR revisited - A sparse dynamic factor model approach," Working Papers 16.08, Swiss National Bank, Study Center Gerzensee.
    4. Kaufmann, Sylvia & Schumacher, Christian, 2019. "Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification," Journal of Econometrics, Elsevier, vol. 210(1), pages 116-134.
    5. Hauber, Philipp & Schumacher, Christian, 2021. "Precision-based sampling with missing observations: A factor model application," Discussion Papers 11/2021, Deutsche Bundesbank.
    6. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    7. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2016. "Bayesian analysis of static and dynamic factor models: An ex-post approach towards the rotation problem," Journal of Econometrics, Elsevier, vol. 192(1), pages 190-206.
    8. Joshua Chan & Eric Eisenstat & Xuewen Yu, 2022. "Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis," Papers 2207.03988, arXiv.org.
    9. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    10. Darjus Hosszejni & Sylvia Fruhwirth-Schnatter, 2022. "Cover It Up! Bipartite Graphs Uncover Identifiability in Sparse Factor Analysis," Papers 2211.00671, arXiv.org, revised Nov 2022.
    11. Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
    12. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    13. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    14. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    15. Adrian Quintero & Emmanuel Lesaffre & Geert Verbeke, 2024. "Bayesian Exploratory Factor Analysis via Gibbs Sampling," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 121-142, February.
    16. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    17. Sylvia Kaufmann & Markus Pape, 2023. "Bayesian (non-)unique sparse factor modelling," Working Papers 23.04, Swiss National Bank, Study Center Gerzensee.
    18. Christian Aßmann & Jens Boysen-Hogrefe & Markus Pape, 2024. "Post-processing for Bayesian analysis of reduced rank regression models with orthonormality restrictions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 577-609, September.
    19. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    20. Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.06354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.