IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v186y2023ics0167947323000944.html
   My bibliography  Save this article

Bayesian predictive modeling of multi-source multi-way data

Author

Listed:
  • Kim, Jonathan
  • Sandri, Brian J.
  • Rao, Raghavendra B.
  • Lock, Eric F.

Abstract

A Bayesian approach to predict a continuous or binary outcome from data that are collected from multiple sources with a multi-way (i.e., multidimensional tensor) structure is described. As a motivating example, molecular data from multiple 'omics sources, each measured over multiple developmental time points, as predictors of early-life iron deficiency (ID) in a rhesus monkey model are considered. The method uses a linear model with a low-rank structure on the coefficients to capture multi-way dependence and model the variance of the coefficients separately across each source to infer their relative contributions. Conjugate priors facilitate an efficient Gibbs sampling algorithm for posterior inference, assuming a continuous outcome with normal errors or a binary outcome with a probit link. Simulations demonstrate that the model performs as expected in terms of misclassification rates and correlation of estimated coefficients with true coefficients, with large gains in performance by incorporating multi-way structure and modest gains when accounting for differing signal sizes across the different sources. Moreover, it provides robust classification of ID monkeys for the motivating application.

Suggested Citation

  • Kim, Jonathan & Sandri, Brian J. & Rao, Raghavendra B. & Lock, Eric F., 2023. "Bayesian predictive modeling of multi-source multi-way data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:csdana:v:186:y:2023:i:c:s0167947323000944
    DOI: 10.1016/j.csda.2023.107783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323000944
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sirio Legramanti & Daniele Durante & David B Dunson, 2020. "Bayesian cumulative shrinkage for infinite factorizations," Biometrika, Biometrika Trust, vol. 107(3), pages 745-752.
    2. Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
    3. Xiaoshan Li & Da Xu & Hua Zhou & Lexin Li, 2018. "Tucker Tensor Regression and Neuroimaging Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 520-545, December.
    4. Palzer, Elise F. & Wendt, Christine H. & Bowler, Russell P. & Hersh, Craig P. & Safo, Sandra E. & Lock, Eric F., 2022. "sJIVE: Supervised joint and individual variation explained," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Wei & Limin Peng & Ying Guo & Amita Manatunga & Jennifer Stevens, 2023. "Tensor response quantile regression with neuroimaging data," Biometrics, The International Biometric Society, vol. 79(3), pages 1947-1958, September.
    2. Tianqi Sun & Weiyu Li & Lu Lin, 2024. "Matrix-variate generalized linear model with measurement error," Statistical Papers, Springer, vol. 65(6), pages 3935-3958, August.
    3. Ghannam, Mai & Nkurunziza, Sévérien, 2023. "Tensor Stein-rules in a generalized tensor regression model," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    4. Ke, Baofang & Zhao, Weihua & Wang, Lei, 2023. "Smoothed tensor quantile regression estimation for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    5. Lin Liu, 2021. "Matrix‐based introduction to multivariate data analysis, by KoheiAdachi 2nd edition. Singapore: Springer Nature, 2020. pp. 457," Biometrics, The International Biometric Society, vol. 77(4), pages 1498-1500, December.
    6. Cui Guo & Jian Kang & Timothy D. Johnson, 2022. "A spatial Bayesian latent factor model for image‐on‐image regression," Biometrics, The International Biometric Society, vol. 78(1), pages 72-84, March.
    7. Sylvia Fruhwirth-Schnatter, 2023. "Generalized Cumulative Shrinkage Process Priors with Applications to Sparse Bayesian Factor Analysis," Papers 2303.00473, arXiv.org.
    8. Hayato Maki & Sakriani Sakti & Hiroki Tanaka & Satoshi Nakamura, 2018. "Quality prediction of synthesized speech based on tensor structured EEG signals," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
    9. Chelsey Hill & James Li & Matthew J. Schneider & Martin T. Wells, 2021. "The tensor auto‐regressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 636-652, July.
    10. Kai Deng & Xin Zhang, 2022. "Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction," Biometrics, The International Biometric Society, vol. 78(3), pages 1067-1079, September.
    11. Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imaging‐based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
    12. Will Wei Sun & Junwei Lu & Han Liu & Guang Cheng, 2017. "Provable sparse tensor decomposition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 899-916, June.
    13. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    14. Florian Huber & Gary Koop, 2023. "Subspace shrinkage in conjugate Bayesian vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 556-576, June.
    15. Giuseppe Brandi & T. Di Matteo, 2020. "A new multilayer network construction via Tensor learning," Papers 2004.05367, arXiv.org.
    16. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
    17. Hongtu Zhu & Dan Shen & Xuewei Peng & Leo Yufeng Liu, 2017. "MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1009-1021, July.
    18. Florian Gunsilius, 2020. "Distributional synthetic controls," Papers 2001.06118, arXiv.org, revised Dec 2021.
    19. Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
    20. Lu, Wenqi & Zhu, Zhongyi & Li, Rui & Lian, Heng, 2024. "Statistical performance of quantile tensor regression with convex regularization," Journal of Multivariate Analysis, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:186:y:2023:i:c:s0167947323000944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.