Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-48711-5
Download full text from publisher
References listed on IDEAS
- Kowarik, Alexander & Templ, Matthias, 2016. "Imputation with the R Package VIM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 74(i07).
- van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
- Ruedi Aebersold & Matthias Mann, 2016. "Mass-spectrometric exploration of proteome structure and function," Nature, Nature, vol. 537(7620), pages 347-355, September.
- Jonathan Frazer & Pascal Notin & Mafalda Dias & Aidan Gomez & Joseph K. Min & Kelly Brock & Yarin Gal & Debora S. Marks, 2021. "Disease variant prediction with deep generative models of evolutionary data," Nature, Nature, vol. 599(7883), pages 91-95, November.
- Mathias Wilhelm & Daniel P. Zolg & Michael Graber & Siegfried Gessulat & Tobias Schmidt & Karsten Schnatbaum & Celina Schwencke-Westphal & Philipp Seifert & Niklas Andrade Krätzig & Johannes Zerweck &, 2021. "Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Mathias Wilhelm & Daniel P. Zolg & Michael Graber & Siegfried Gessulat & Tobias Schmidt & Karsten Schnatbaum & Celina Schwencke-Westphal & Philipp Seifert & Niklas Andrade Krätzig & Johannes Zerweck &, 2021. "Author Correction: Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
- Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
- Rebecca C. Poulos & Peter G. Hains & Rohan Shah & Natasha Lucas & Dylan Xavier & Srikanth S. Manda & Asim Anees & Jennifer M. S. Koh & Sadia Mahboob & Max Wittman & Steven G. Williams & Erin K. Sykes , 2020. "Strategies to enable large-scale proteomics for reproducible research," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
- Erwin M. Schoof & Benjamin Furtwängler & Nil Üresin & Nicolas Rapin & Simonas Savickas & Coline Gentil & Eric Lechman & Ulrich auf dem Keller & John E. Dick & Bo T. Porse, 2021. "Quantitative single-cell proteomics as a tool to characterize cellular hierarchies," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
- Valentin Todorov & Matthias Templ & Peter Filzmoser, 2011. "Detection of multivariate outliers in business survey data with incomplete information," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(1), pages 37-56, April.
- Runmin Wei & Jingye Wang & Erik Jia & Tianlu Chen & Yan Ni & Wei Jia, 2018. "GSimp: A Gibbs sampler based left-censored missing value imputation approach for metabolomics studies," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-14, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniela Klaproth-Andrade & Johannes Hingerl & Yanik Bruns & Nicholas H. Smith & Jakob Träuble & Mathias Wilhelm & Julien Gagneur, 2024. "Deep learning-driven fragment ion series classification enables highly precise and sensitive de novo peptide sequencing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Yi Yang & Qun Fang, 2024. "Prediction of glycopeptide fragment mass spectra by deep learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Wen-Feng Zeng & Xie-Xuan Zhou & Sander Willems & Constantin Ammar & Maria Wahle & Isabell Bludau & Eugenia Voytik & Maximillian T. Strauss & Matthias Mann, 2022. "AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Kevin L. Yang & Fengchao Yu & Guo Ci Teo & Kai Li & Vadim Demichev & Markus Ralser & Alexey I. Nesvizhskii, 2023. "MSBooster: improving peptide identification rates using deep learning-based features," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Melih Yilmaz & William E. Fondrie & Wout Bittremieux & Carlo F. Melendez & Rowan Nelson & Varun Ananth & Sewoong Oh & William Stafford Noble, 2024. "Sequence-to-sequence translation from mass spectra to peptides with a transformer model," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Nengsih Titin Agustin & Bertrand Frédéric & Maumy-Bertrand Myriam & Meyer Nicolas, 2019. "Determining the number of components in PLS regression on incomplete data set," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(6), pages 1-28, December.
- Charlotte Adams & Wassim Gabriel & Kris Laukens & Mario Picciani & Mathias Wilhelm & Wout Bittremieux & Kurt Boonen, 2024. "Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Adel Bosch & Steven F. Koch, 2021. "Individual and Household Debt: Does Imputation Choice Matter?," Working Papers 202141, University of Pretoria, Department of Economics.
- Jongmin Woo & Sarah M. Williams & Lye Meng Markillie & Song Feng & Chia-Feng Tsai & Victor Aguilera-Vazquez & Ryan L. Sontag & Ronald J. Moore & Dehong Hu & Hardeep S. Mehta & Joshua Cantlon-Bruce & T, 2021. "High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Valdemaras Petrosius & Pedro Aragon-Fernandez & Nil Üresin & Gergo Kovacs & Teeradon Phlairaharn & Benjamin Furtwängler & Jeff Op De Beeck & Sarah L. Skovbakke & Steffen Goletz & Simon Francis Thomsen, 2023. "Exploration of cell state heterogeneity using single-cell proteomics through sensitivity-tailored data-independent acquisition," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Parashmoni Borah & Suhasini Hazarika & Amit Prakash, 2022. "Assessing the state of homogeneity, variability and trends in the rainfall time series from 1969 to 2017 and its significance for groundwater in north-east India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 585-617, March.
- Claudia Ctortecka & Natalie M. Clark & Brian W. Boyle & Anjali Seth & D. R. Mani & Namrata D. Udeshi & Steven A. Carr, 2024. "Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Nicholas Tierney & Dianne Cook, 2018. "Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations," Monash Econometrics and Business Statistics Working Papers 14/18, Monash University, Department of Econometrics and Business Statistics.
- Lei Xin & Rui Qiao & Xin Chen & Hieu Tran & Shengying Pan & Sahar Rabinoviz & Haibo Bian & Xianliang He & Brenton Morse & Baozhen Shan & Ming Li, 2022. "A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Weiping Sun & Qianqiu Zhang & Xiyue Zhang & Ngoc Hieu Tran & M. Ziaur Rahman & Zheng Chen & Chao Peng & Jun Ma & Ming Li & Lei Xin & Baozhen Shan, 2023. "Glycopeptide database search and de novo sequencing with PEAKS GlycanFinder enable highly sensitive glycoproteomics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Matthias Templ, 2023. "Enhancing Precision in Large-Scale Data Analysis: An Innovative Robust Imputation Algorithm for Managing Outliers and Missing Values," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
- Maria Lucia Parrella & Giuseppina Albano & Michele La Rocca & Cira Perna, 2019. "Reconstructing missing data sequences in multivariate time series: an application to environmental data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 359-383, June.
- Hanqing Liao & Carolina Barra & Zhicheng Zhou & Xu Peng & Isaac Woodhouse & Arun Tailor & Robert Parker & Alexia Carré & Persephone Borrow & Michael J. Hogan & Wayne Paes & Laurence C. Eisenlohr & Rob, 2024. "MARS an improved de novo peptide candidate selection method for non-canonical antigen target discovery in cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Celina Tretter & Niklas Andrade Krätzig & Matteo Pecoraro & Sebastian Lange & Philipp Seifert & Clara Frankenberg & Johannes Untch & Gabriela Zuleger & Mathias Wilhelm & Daniel P. Zolg & Florian S. Dr, 2023. "Proteogenomic analysis reveals RNA as a source for tumor-agnostic neoantigen identification," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48711-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.