IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v101y2014i4p799-814..html
   My bibliography  Save this article

Censored rank independence screening for high-dimensional survival data

Author

Listed:
  • Rui Song
  • Wenbin Lu
  • Shuangge Ma
  • X. Jessie Jeng

Abstract

In modern statistical applications, the dimension of covariates can be much larger than the sample size. In the context of linear models, correlation screening (Fan & Lv, J. R. Statist. Soc. B, 70, 849–911, 2008) has been shown to reduce the dimension of such data effectively while achieving the sure screening property, i.e., all of the active variables can be retained with high probability. However, screening based on the Pearson correlation does not perform well when applied to contaminated covariates and/or censored outcomes. In this paper, we study censored rank independence screening of high-dimensional survival data. The proposed method is robust to predictors that contain outliers, works for a general class of survival models, and enjoys the sure screening property. Simulations and an analysis of real data demonstrate that the proposed method performs competitively on survival datasets of moderate size and high-dimensional predictors, even when these are contaminated.

Suggested Citation

  • Rui Song & Wenbin Lu & Shuangge Ma & X. Jessie Jeng, 2014. "Censored rank independence screening for high-dimensional survival data," Biometrika, Biometrika Trust, vol. 101(4), pages 799-814.
  • Handle: RePEc:oup:biomet:v:101:y:2014:i:4:p:799-814.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu047
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:101:y:2014:i:4:p:799-814.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.