IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v130y2019icp1-17.html
   My bibliography  Save this article

Bootstrap estimation of uncertainty in prediction for generalized linear mixed models

Author

Listed:
  • Flores-Agreda, Daniel
  • Cantoni, Eva

Abstract

In the framework of Mixed Models, it is often of interest to provide an estimate of the uncertainty in predictions for the random effects, customarily defined by the Mean Squared Error of Prediction (MSEP). To address this computation in the Generalized Linear Mixed Model (GLMM) context, a non-parametric Bootstrap algorithm is proposed. First, a newly developed Bootstrap scheme relying on random weighting of cluster contributions to the joint likelihood function of the model and the Laplace Approximation is used to create bootstrap replicates of the parameters. Second, these replicates yield in turn bootstrap samples for the random effects and for the responses. Third, generating predictions of the random effects employing the bootstrap samples of observations produces bootstrap replicates of the random effects that, in conjunction with their respective bootstrap samples, are used in the estimation of the MSEP. To assess the validity of the proposed method, two simulation studies are presented. The first one in the framework of Gaussian LMM, contrasts the quality of the proposed approach with respect to: (i) analytical estimators of MSEP based on second-order correct approximations, (ii) Conditional Variances obtained with a Bayesian representation and (iii) other bootstrap schemes, on the grounds of relative bias, relative efficiency and the coverage ratios of resulting prediction intervals. The second simulation study serves the purpose of illustrating the properties of our proposal in a Non-Gaussian GLMM setting, namely a Mixed Logit Model, where the alternatives are scarce.

Suggested Citation

  • Flores-Agreda, Daniel & Cantoni, Eva, 2019. "Bootstrap estimation of uncertainty in prediction for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 1-17.
  • Handle: RePEc:eee:csdana:v:130:y:2019:i:c:p:1-17
    DOI: 10.1016/j.csda.2018.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318301890
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Field, C. A. & Pang, Zhen & Welsh, A. H., 2010. "Bootstrapping Robust Estimates for Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1606-1616.
    2. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    3. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    4. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    5. Jinyuan Chang & Peter Hall, 2015. "Double-bootstrap methods that use a single double-bootstrap simulation," Biometrika, Biometrika Trust, vol. 102(1), pages 203-214.
    6. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238, April.
    7. James R. Carpenter & Harvey Goldstein & Jon Rasbash, 2003. "A novel bootstrap procedure for assessing the relationship between class size and achievement," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 431-443, October.
    8. Morris, Jeffrey S., 2002. "The BLUPs are not "best" when it comes to bootstrapping," Statistics & Probability Letters, Elsevier, vol. 56(4), pages 425-430, February.
    9. Li, Huilin & Lahiri, P., 2010. "An adjusted maximum likelihood method for solving small area estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 882-892, April.
    10. Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.
    11. O’Shaughnessy, P.Y. & Welsh, A.H., 2018. "Bootstrapping longitudinal data with multiple levels of variation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 117-131.
    12. A. C. Singh & D. M. Stukel & D. Pfeffermann, 1998. "Bayesian versus frequentist measures of error in small area estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 377-396.
    13. Jiming Jiang & P. Lahiri, 2001. "Empirical Best Prediction for Small Area Inference with Binary Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 217-243, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alicja Wolny-Dominiak & Tomasz Żądło, 2021. "The Measures of Accuracy of Claim Frequency Credibility Predictor," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    2. Jin, Shaobo & Lee, Youngjo, 2024. "Standard error estimates in hierarchical generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    3. Zheng, Nan & Cadigan, Noel, 2021. "Frequentist delta-variance approximations with mixed-effects models and TMB," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    4. Haoran Zhao & Sen Guo, 2021. "Uncertain Interval Forecasting for Combined Electricity-Heat-Cooling-Gas Loads in the Integrated Energy System Based on Multi-Task Learning and Multi-Kernel Extreme Learning Machine," Mathematics, MDPI, vol. 9(14), pages 1-32, July.
    5. Tomasz .Zk{a}d{l}o & Adam Chwila, 2024. "A step towards the integration of machine learning and small area estimation," Papers 2402.07521, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chwila Adam & Żądło Tomasz, 2020. "On the choice of the number of Monte Carlo iterations and bootstrap replicates in Empirical Best Prediction," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 35-60, June.
    2. Adam Chwila & Tomasz Żądło, 2020. "On the choice of the number of Monte Carlo iterations and bootstrap replicates in Empirical Best Prediction," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 35-60, June.
    3. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    4. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    5. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    6. repec:bla:jorssa:v:180:y:2017:i:4:p:1163-1190 is not listed on IDEAS
    7. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    8. Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.
    9. Tomáš Hobza & Domingo Morales & Laureano Santamaría, 2018. "Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 270-294, June.
    10. Hirose, Masayo Yoshimori, 2017. "Non-area-specific adjustment factor for second-order efficient empirical Bayes confidence interval," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 67-78.
    11. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    12. Newhouse,David Locke & Merfeld,Joshua David & Ramakrishnan,Anusha Pudugramam & Swartz,Tom & Lahiri,Partha, 2022. "Small Area Estimation of Monetary Poverty in Mexico Using Satellite Imagery and Machine Learning," Policy Research Working Paper Series 10175, The World Bank.
    13. Craiu, Radu V. & Duchesne, Thierry, 2018. "A scalable and efficient covariate selection criterion for mixed effects regression models with unknown random effects structure," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 154-161.
    14. Tomasz .Zk{a}d{l}o & Adam Chwila, 2024. "A step towards the integration of machine learning and small area estimation," Papers 2402.07521, arXiv.org.
    15. M. Giovanna Ranalli & Giorgio E. Montanari & Cecilia Vicarelli, 2018. "Estimation of small area counts with the benchmarking property," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 349-378, December.
    16. Sanjoy K. Sinha, 2019. "Robust small area estimation in generalized linear mixed models," METRON, Springer;Sapienza Università di Roma, vol. 77(3), pages 201-225, December.
    17. Domingo Morales & Joscha Krause & Jan Pablo Burgard, 2022. "On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 344-368, March.
    18. Noah Cheruiyot Mutai, 2022. "Small area estimation of health insurance coverage for Kenyan counties," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 16(3), pages 231-254, December.
    19. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "$$\ell _2$$ ℓ 2 -penalized approximate likelihood inference in logit mixed models for regional prevalence estimation under covariate rank-deficiency," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 459-489, May.
    20. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    21. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:130:y:2019:i:c:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.