IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11959-d667712.html
   My bibliography  Save this article

The Measures of Accuracy of Claim Frequency Credibility Predictor

Author

Listed:
  • Alicja Wolny-Dominiak

    (Department of Statistical and Mathematical Methods in Economics, University of Economics in Katowice, 40-287 Katowice, Poland)

  • Tomasz Żądło

    (Department of Statistics, Econometrics and Mathematics, University of Economics in Katowice, 40-287 Katowice, Poland)

Abstract

Nowadays, the sustainability risks and opportunities start to affect strongly insurance companies in regard to the resulting additional variability of future values of variables taken into account in the decision processes. This is important especially in the era of sustainable non-life insurance promoting, among others, the use of ecological car engines or ecological systems of building heating. The fundamental issue in non-life insurance is to predict future claims (e.g., the aggregate value of claims or the number of claims for a single policy) in a heterogeneous portfolio of policies taking account of claim experience. For this purpose, the so-called credibility theory is used, which was initiated by the fundamental Bühlmann model modified to the Bühlmann–Straub model. Several modifications of the model have been proposed in the literature. One of them is the development of the relationship between the credibility models and statistical mixed models (e.g., linear mixed models) for longitudinal data. The article proposes the use of the parametric bootstrap algorithm to estimate measures of accuracy of the credibility predictor of the number of claims for a single policy taking into account new risk factors resulting from the emergence of green technologies on the considered market. The predictor is obtained for the model which belongs to the class of Generalised Linear Mixed Models (GLMMs) and which is a generalization of the Bülmann–Straub model. Additionally, the possibility of predicting the number of claims and the problem of the assessment of the prediction accuracy are presented based on a policy characterized by new green risk factor (hybrid motorcycle engine) not previously present in the portfolio. The paper presents the proposed methodology in a case study using real insurance data from the Polish market.

Suggested Citation

  • Alicja Wolny-Dominiak & Tomasz Żądło, 2021. "The Measures of Accuracy of Claim Frequency Credibility Predictor," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11959-:d:667712
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Flores-Agreda, Daniel & Cantoni, Eva, 2019. "Bootstrap estimation of uncertainty in prediction for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 1-17.
    2. Frees, Edward W. & Young, Virginia R. & Luo, Yu, 1999. "A longitudinal data analysis interpretation of credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 229-247, May.
    3. Gholamreza Shiran & Reza Imaninasab & Razieh Khayamim, 2021. "Crash Severity Analysis of Highways Based on Multinomial Logistic Regression Model, Decision Tree Techniques, and Artificial Neural Network: A Modeling Comparison," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    4. Denuit, Michel & Trufin, Julien, 2021. "Generalization error for Tweedie models: decomposition and error reduction with bagging," LIDAM Reprints ISBA 2021025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Jewell, William S., 1974. "Credible Means are exact Bayesian for Exponential Families," ASTIN Bulletin, Cambridge University Press, vol. 8(1), pages 77-90, September.
    6. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2019. "Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data," Annals of Actuarial Science, Cambridge University Press, vol. 13(2), pages 378-399, September.
    7. Yuan-tao Xie & Zheng-xiao Li & Rahul A. Parsa, 2018. "Extension and Application of Credibility Models in Predicting Claim Frequency," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-8, February.
    8. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2019. "Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data," LIDAM Reprints ISBA 2019039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Boucher, Jean-Philippe & Inoussa, Rofick, 2014. "A Posteriori Ratemaking With Panel Data," ASTIN Bulletin, Cambridge University Press, vol. 44(3), pages 587-612, September.
    10. Boucher, Jean-Philippe & Denuit, Michel, 2006. "Fixed versus Random Effects in Poisson Regression Models for Claim Counts: A Case Study with Motor Insurance," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 285-301, May.
    11. Nelder, J.A. & Verrall, R.J., 1997. "Credibility Theory and Generalized Linear Models," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 71-82, May.
    12. Antonio, Katrien & Beirlant, Jan, 2007. "Actuarial statistics with generalized linear mixed models," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 58-76, January.
    13. Garrido, José & Zhou, Jun, 2009. "Full Credibility with Generalized Linear and Mixed Models," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 61-80, May.
    14. Jerry S. Huang & Kili C. Wang, 2019. "Are Green Car Drivers Friendly Drivers? A Study Of Taiwan'S Automobile Insurance Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 86(1), pages 103-119, March.
    15. Ohlsson, Esbjörn & Johansson, Björn, 2006. "Exact Credibility and Tweedie Models," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 121-133, May.
    16. Pinquet, Jean, 2020. "Poisson Models With Dynamic Random Effects And Nonnegative Credibilities Per Period," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 585-618, May.
    17. Gao, Guangyuan & Wüthrich, Mario V. & Yang, Hanfang, 2019. "Evaluation of driving risk at different speeds," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 108-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You-Shyang Chen & Chien-Ku Lin & Yu-Sheng Lin & Su-Fen Chen & Huei-Hua Tsao, 2022. "Identification of Potential Valid Clients for a Sustainable Insurance Policy Using an Advanced Mixed Classification Model," Sustainability, MDPI, vol. 14(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulsen, Jostein & Lunde, Astrid & Skaug, Hans Julius, 2008. "Fitting mixed-effects models when data are left truncated," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 121-133, August.
    2. Gigante, Patrizia & Picech, Liviana & Sigalotti, Luciano, 2013. "Claims reserving in the hierarchical generalized linear model framework," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 381-390.
    3. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez‐Marín, 2021. "Near‐miss telematics in motor insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 569-589, September.
    4. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    5. Dornheim, Harald & Brazauskas, Vytaras, 2011. "Robust-efficient credibility models with heavy-tailed claims: A mixed linear models perspective," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 72-84, January.
    6. Jean-Philippe Boucher & Roxane Turcotte, 2020. "A Longitudinal Analysis of the Impact of Distance Driven on the Probability of Car Accidents," Risks, MDPI, vol. 8(3), pages 1-19, September.
    7. Landsman, Zinoviy, 2002. "Credibility theory: a new view from the theory of second order optimal statistics," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 351-362, June.
    8. Dhiti Osatakul & Xueyuan Wu, 2021. "Discrete-Time Risk Models with Claim Correlated Premiums in a Markovian Environment," Risks, MDPI, vol. 9(1), pages 1-23, January.
    9. Chen, Zezhun & Dassios, Angelos & Tzougas, George, 2022. "EM estimation for the bivariate mixed exponential regression model," LSE Research Online Documents on Economics 115132, London School of Economics and Political Science, LSE Library.
    10. Nemanja Milanović & Miloš Milosavljević & Slađana Benković & Dušan Starčević & Željko Spasenić, 2020. "An Acceptance Approach for Novel Technologies in Car Insurance," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    11. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    12. Xacur, Oscar Alberto Quijano & Garrido, José, 2018. "Bayesian credibility for GLMs," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 180-189.
    13. Yikai (Maxwell) Gong & Zhuangdi Li & Maria Milazzo & Kristen Moore & Matthew Provencher, 2018. "Credibility Methods for Individual Life Insurance," Risks, MDPI, vol. 6(4), pages 1-16, December.
    14. Meng Sun & Yi Lu, 2022. "A Generalized Linear Mixed Model for Data Breaches and Its Application in Cyber Insurance," Risks, MDPI, vol. 10(12), pages 1-23, November.
    15. Antonio, Katrien & Beirlant, Jan, 2007. "Actuarial statistics with generalized linear mixed models," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 58-76, January.
    16. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    17. Andreas Bayerstadler & Franz Benstetter & Christian Heumann & Fabian Winter, 2014. "A predictive modeling approach to increasing the economic effectiveness of disease management programs," Health Care Management Science, Springer, vol. 17(3), pages 284-301, September.
    18. Shi, Peng & Zhao, Zifeng, 2024. "Enhanced pricing and management of bundled insurance risks with dependence-aware prediction using pair copula construction," Journal of Econometrics, Elsevier, vol. 240(1).
    19. Katrien Antonio & Jan Beirlant, 2008. "Issues in Claims Reserving and Credibility: A Semiparametric Approach With Mixed Models," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 643-676, September.
    20. Lee, Woojoo & Kim, Jeonghwan & Ahn, Jae Youn, 2020. "The Poisson random effect model for experience ratemaking: Limitations and alternative solutions," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 26-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11959-:d:667712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.