IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v199y2024ics0167947324000987.html
   My bibliography  Save this article

Bootstrap-based statistical inference for linear mixed effects under misspecifications

Author

Listed:
  • Reluga, Katarzyna
  • Lombardía, María-José
  • Sperlich, Stefan

Abstract

Linear mixed effects are considered excellent predictors of cluster-level parameters in various domains. However, previous research has demonstrated that their performance is affected by departures from model assumptions. Given the common occurrence of these departures in empirical studies, there is a need for inferential methods that are robust to misspecifications while remaining accessible and appealing to practitioners. Statistical tools have been developed for cluster-wise and simultaneous inference for mixed effects under distributional misspecifications, employing a user-friendly semiparametric random effect bootstrap. The merits and limitations of this approach are discussed in the general context of model misspecification. Theoretical analysis demonstrates the asymptotic consistency of the methods under general regularity conditions. Simulations show that the proposed intervals are robust to departures from modelling assumptions, including asymmetry and long tails in the distributions of errors and random effects, outperforming competitors in terms of empirical coverage probability. Finally, the methodology is applied to construct confidence intervals for household income across counties in the Spanish region of Galicia.

Suggested Citation

  • Reluga, Katarzyna & Lombardía, María-José & Sperlich, Stefan, 2024. "Bootstrap-based statistical inference for linear mixed effects under misspecifications," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000987
    DOI: 10.1016/j.csda.2024.108014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000987
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.