IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v116y2017icp67-78.html
   My bibliography  Save this article

Non-area-specific adjustment factor for second-order efficient empirical Bayes confidence interval

Author

Listed:
  • Hirose, Masayo Yoshimori

Abstract

An empirical Bayes confidence interval has high user demand in many applications. In particular, the second-order empirical Bayes confidence interval, the coverage error of which is of the third order for a large number of areas, m, is widely used in small area estimation when the sample size within each area is not large enough to make reliable direct estimates according to a design-based approach. Yoshimori and Lahiri (2014a) proposed a new type of confidence interval, called the second-order efficient empirical Bayes confidence interval, with a length less than that of the direct confidence estimated according to the design-based approach. However, this interval still has some disadvantages: (i) it is hard to use when at least one leverage value is high; (ii) many iterations tend to be required to obtain the estimators of one global model variance parameter as the number of areas, m, increases, due to the area-specific adjustment factor. To prevent such issues, this study proposes a more efficient confidence interval to allow for high leverage and reduce the number of iterations for large m. To achieve this purpose, we theoretically obtained a non-area-specific adjustment factor and the measure of uncertainty of the empirical Bayes estimator, which consist of empirical Bayes confidence interval, maintaining the existing desired properties. Moreover, we present three simulation results and real data analysis to show overall superiority of our confidence interval method over the other methods, including the one proposed in Yoshimori and Lahiri (2014a).

Suggested Citation

  • Hirose, Masayo Yoshimori, 2017. "Non-area-specific adjustment factor for second-order efficient empirical Bayes confidence interval," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 67-78.
  • Handle: RePEc:eee:csdana:v:116:y:2017:i:c:p:67-78
    DOI: 10.1016/j.csda.2017.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317301500
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshitaka Sasase & Tatsuya Kubokawa, 2005. ""Asymptotic Correction of Empirical Bayes Confidence Intervals and its Application to Small Area Estimation" (in Japanese)," CIRJE J-Series CIRJE-J-127, CIRJE, Faculty of Economics, University of Tokyo.
    2. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    3. Gauri Sankar Datta & Malay Ghosh & David Daniel Smith & Parthasarathi Lahiri, 2002. "On an Asymptotic Theory of Conditional and Unconditional Coverage Probabilities of Empirical Bayes Confidence Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 139-152, March.
    4. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238, April.
    5. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    6. Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
    7. Li, Huilin & Lahiri, P., 2010. "An adjusted maximum likelihood method for solving small area estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 882-892, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    2. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    3. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    4. repec:bla:jorssa:v:180:y:2017:i:4:p:1163-1190 is not listed on IDEAS
    5. Tatsuya Kubokawa, 2010. "On Measuring Uncertainty of Small Area Estimators with Higher Order Accuracy," CIRJE F-Series CIRJE-F-754, CIRJE, Faculty of Economics, University of Tokyo.
    6. Tatsuya Kubokawa, 2009. "A Review of Linear Mixed Models and Small Area Estimation," CIRJE F-Series CIRJE-F-702, CIRJE, Faculty of Economics, University of Tokyo.
    7. Tatsuya Kubokawa, 2009. "Corrected Empirical Bayes Confidence Intervals in Nested Error Regression Models," CIRJE F-Series CIRJE-F-632, CIRJE, Faculty of Economics, University of Tokyo.
    8. Tatsuya Kubokawa & Bui Nagashima, 2011. "Parametric Bootstrap Methods for Bias Correction in Linear Mixed Models," CIRJE F-Series CIRJE-F-801, CIRJE, Faculty of Economics, University of Tokyo.
    9. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    10. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    11. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    12. Erciulescu Andreea L. & Fuller Wayne A., 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    13. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    14. Andreea L. Erciulescu & Wayne A. Fuller, 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    15. Malay Ghosh & Tapabrata Maiti, 2008. "Empirical Bayes Confidence Intervals for Means of Natural Exponential Family‐Quadratic Variance Function Distributions with Application to Small Area Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 484-495, September.
    16. Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
    17. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
    18. Torabi, Mahmoud & Rao, J.N.K., 2014. "On small area estimation under a sub-area level model," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 36-55.
    19. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    20. Flores-Agreda, Daniel & Cantoni, Eva, 2019. "Bootstrap estimation of uncertainty in prediction for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 1-17.
    21. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    22. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:116:y:2017:i:c:p:67-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.