IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v52y2003i4p431-443.html
   My bibliography  Save this article

A novel bootstrap procedure for assessing the relationship between class size and achievement

Author

Listed:
  • James R. Carpenter
  • Harvey Goldstein
  • Jon Rasbash

Abstract

Summary. There is on‐going concern about the relationship between class size and achievement for children in their first years of schooling. The Institute of Education's class size project was set up to address this issue and began recruiting in the autumn of 1996. However, because of the non‐normality of achievement measures, especially in mathematics, the results have hitherto been presented by using transformed achievement measures. This makes the interpretation difficult for non‐statisticians. Ideally, the data would be modelled on the original scale and a bootstrap procedure used to ensure that inferences are robust to non‐normality. However, the data are multilevel. In the paper we therefore propose a nonparametric residual bootstrap procedure that is suitable for multilevel models, show that it is consistent and present a simulation study which demonstrates its potential to yield substantial reductions in the difference between nominal and actual confidence interval coverage, compared with a parametric bootstrap, when the underlying distribution of the data is non‐normal. We then apply our approach to estimate the relationship between class size and achievement for children in their reception year, after adjusting for other possible determinants.

Suggested Citation

  • James R. Carpenter & Harvey Goldstein & Jon Rasbash, 2003. "A novel bootstrap procedure for assessing the relationship between class size and achievement," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 431-443, October.
  • Handle: RePEc:bla:jorssc:v:52:y:2003:i:4:p:431-443
    DOI: 10.1111/1467-9876.00415
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00415
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alina Peluso & Paolo Berta & Veronica Vinciotti, 2019. "Do pay-for-performance incentives lead to a better health outcome?," Empirical Economics, Springer, vol. 56(6), pages 2167-2184, June.
    2. George Leckie, 2018. "Avoiding Bias When Estimating the Consistency and Stability of Value-Added School Effects," Journal of Educational and Behavioral Statistics, , vol. 43(4), pages 440-468, August.
    3. Rebecca C. Steorts & Timo Schmid & Nikos Tzavidis, 2020. "Smoothing and Benchmarking for Small Area Estimation," International Statistical Review, International Statistical Institute, vol. 88(3), pages 580-598, December.
    4. David Afshartous & Michael Wolf, 2007. "Avoiding ‘data snooping’ in multilevel and mixed effects models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1035-1059, October.
    5. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    6. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    7. Manuel Gomes & Richard Grieve & Richard Nixon & Edmond S.‐W. Ng & James Carpenter & Simon G. Thompson, 2012. "Methods For Covariate Adjustment In Cost‐Effectiveness Analysis That Use Cluster Randomised Trials," Health Economics, John Wiley & Sons, Ltd., vol. 21(9), pages 1101-1118, September.
    8. L. Bryan, Mark & P. Jenkins, Stephen, 2013. "Regression analysis of country effects using multilevel data: a cautionary tale," ISER Working Paper Series 2013-14, Institute for Social and Economic Research.
    9. Sumonkanti Das & Bappi Kumar & Luthful Alahi Kawsar, 2020. "Disaggregated level child morbidity in Bangladesh: An application of small area estimation method," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-20, May.
    10. Tomasz .Zk{a}d{l}o & Adam Chwila, 2024. "A step towards the integration of machine learning and small area estimation," Papers 2402.07521, arXiv.org.
    11. Weidenhammer, Beate & Schmid, Timo & Salvati, Nicola & Tzavidis, Nikos, 2016. "A unit-level quantile nested error regression model for domain prediction with continuous and discrete outcomes," Discussion Papers 2016/12, Free University Berlin, School of Business & Economics.
    12. Flores-Agreda, Daniel & Cantoni, Eva, 2019. "Bootstrap estimation of uncertainty in prediction for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 1-17.
    13. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
    14. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    15. Reluga, Katarzyna & Lombardía, María-José & Sperlich, Stefan, 2024. "Bootstrap-based statistical inference for linear mixed effects under misspecifications," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    16. Gomes, M & Grieve, R, 2011. "Estimating the Effects of Friendship Networks on Health Behaviors of Adolescents," Health, Econometrics and Data Group (HEDG) Working Papers 11/14, HEDG, c/o Department of Economics, University of York.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:52:y:2003:i:4:p:431-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.