IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v77y2025i1d10.1007_s10463-024-00909-6.html
   My bibliography  Save this article

Improved confidence intervals for nonlinear mixed-effects and nonparametric regression models

Author

Listed:
  • Nan Zheng

    (Memorial University of Newfoundland)

  • Noel Cadigan

    (Fisheries and Marine Institute of Memorial University of Newfoundland)

Abstract

Statistical inference for high-dimensional parameters (HDPs) can leverage their intrinsic correlations, as spatially or temporally close parameters tend to have similar values. This is why nonlinear mixed-effects models (NMMs) are commonly used for HDPs. Conversely, in many practical applications, the random effects (REs) in NMMs are correlated HDPs that should remain constant during repeated sampling for frequentist inference. In both scenarios, the inference should be conditional on REs, instead of marginal inference by integrating out REs. We summarize recent theory of conditional inference for NMM, and then propose a bias-corrected RE predictor and confidence interval (CI). We also extend this methodology to accommodate the case where some REs are not associated with data. Simulation studies indicate our new approach leads to substantial improvement in the conditional coverage rate of RE CIs, including CIs for smooth functions in generalized additive models, compared to the existing method based on marginal inference.

Suggested Citation

  • Nan Zheng & Noel Cadigan, 2025. "Improved confidence intervals for nonlinear mixed-effects and nonparametric regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(1), pages 105-126, February.
  • Handle: RePEc:spr:aistmt:v:77:y:2025:i:1:d:10.1007_s10463-024-00909-6
    DOI: 10.1007/s10463-024-00909-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-024-00909-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-024-00909-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood, 2020. "Rejoinder on: Inference and computation with Generalized Additive Models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 354-358, June.
    2. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    3. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    4. Giampiero Marra & Simon N. Wood, 2012. "Coverage Properties of Confidence Intervals for Generalized Additive Model Components," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(1), pages 53-74, March.
    5. M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
    6. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    7. Zheng, Nan & Cadigan, Noel, 2021. "Frequentist delta-variance approximations with mixed-effects models and TMB," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    8. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    9. Nan Zheng & Brajendra C. Sutradhar, 2018. "Inferences in semi-parametric dynamic mixed models for longitudinal count data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 215-247, February.
    10. Flores-Agreda, Daniel & Cantoni, Eva, 2019. "Bootstrap estimation of uncertainty in prediction for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 1-17.
    11. He, Heping & Severini, Thomas A., 2016. "A flexible approach to inference in semiparametric regression models with correlated errors using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 316-329.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    2. Luca Scrucca, 2022. "A COVINDEX based on a GAM beta regression model with an application to the COVID-19 pandemic in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 881-900, October.
    3. Frank van Berkum & Katrien Antonio & Michel Vellekoop, 2021. "Quantifying longevity gaps using micro‐level lifetime data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 548-570, April.
    4. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    5. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    6. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    7. François Freddy Ateba & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Drissa Konaté & Sory Ibrahim Diawara & Séidina Aboubacar Samba Diakité & Ayouba Diarra & Mamadou D. Coulibaly & Mathias Dolo, 2020. "Spatio-Temporal Dynamic of Malaria Incidence: A Comparison of Two Ecological Zones in Mali," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
    8. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    9. Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
    10. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    11. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    12. Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
    13. Gerhard Tutz & Jan Gertheiss, 2014. "Rating Scales as Predictors—The Old Question of Scale Level and Some Answers," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 357-376, July.
    14. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    15. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Matthew Naveiras & Si On Yoon & Aaron Benjamin, 2023. "Incorporating Functional Response Time Effects into a Signal Detection Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 1056-1086, September.
    16. Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2017. "A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 484-496, April.
    17. Cheol-Joo Cho & Kwangil Cheon & Wanmo Kang, 2024. "Assessment of the Spatial Variation of the Economic Benefits of Urban Green Spaces in a Highly Urbanized Area," Land, MDPI, vol. 13(5), pages 1-16, April.
    18. Kunegel-Lion, Mélodie & Neilson, Eric W. & Mansuy, Nicolas & Goodsman, Devin W., 2022. "Habitat quality does not predict animal population abundance on frequently disturbed landscapes," Ecological Modelling, Elsevier, vol. 469(C).
    19. Longhi, C. & Musolesi, A. & Baumont, C., 2013. "Modeling the industrial dynamics of the European metropolitan areas during the process of economic integration: a semiparametric approach," Working Papers 2013-10, Grenoble Applied Economics Laboratory (GAEL).
    20. Paul Ghelasi & Florian Ziel, 2024. "From day-ahead to mid and long-term horizons with econometric electricity price forecasting models," Papers 2406.00326, arXiv.org, revised Aug 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:77:y:2025:i:1:d:10.1007_s10463-024-00909-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.