IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v160y2021ics016794732100061x.html
   My bibliography  Save this article

Frequentist delta-variance approximations with mixed-effects models and TMB

Author

Listed:
  • Zheng, Nan
  • Cadigan, Noel

Abstract

Measures of uncertainty are investigated for estimates and predictions using nonlinear mixed-effects models including state–space models in particular. These nonlinear mixed-effects models include fixed parameters and random effects. Maximum likelihood estimation of the parameters and conditional mean predictors of random effects are commonly used to estimate important quantities for a wide spectrum of applications. These quantities of interest may be functions of the parameters and random effects. In this case, software packages such as TMB and glmmTMB use a generalized delta method to provide standard errors and statistical inference. In the frequentist framework, it is clarified that these packages actually provide estimates of mean squared errors (MSE’s) based on a multivariate normal approximation of the distribution of the random effects given data. It is further shown that the MSE’s are not the variance of estimates due to repeated sampling of the data and the random effects. Equations are provided for that variance, including orders of approximations. In many cases the MSE’s will be more appropriate to use for statistical inference, but not always, and this is demonstrated for a simple random-walk state–space model example.

Suggested Citation

  • Zheng, Nan & Cadigan, Noel, 2021. "Frequentist delta-variance approximations with mixed-effects models and TMB," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:csdana:v:160:y:2021:i:c:s016794732100061x
    DOI: 10.1016/j.csda.2021.107227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732100061X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    2. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    3. Flores-Agreda, Daniel & Cantoni, Eva, 2019. "Bootstrap estimation of uncertainty in prediction for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 1-17.
    4. Pedersen, M.W. & Berg, C.W. & Thygesen, U.H. & Nielsen, A. & Madsen, H., 2011. "Estimation methods for nonlinear state-space models in ecology," Ecological Modelling, Elsevier, vol. 222(8), pages 1394-1400.
    5. Skaug, Hans J. & Fournier, David A., 2006. "Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 699-709, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Vincenzi & Marc Mangel & Alain J Crivelli & Stephan Munch & Hans J Skaug, 2014. "Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-16, September.
    2. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    3. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    4. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    5. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    6. Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers 01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    7. Devin S. Johnson & Brian M. Brost & Mevin B. Hooten, 2022. "Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 382-400, June.
    8. Ingrid Sandvig Thorsen & Bård Støve & Hans J. Skaug, 2023. "A TMB Approach to Study Spatial Variation in Weather-Generated Claims in Insurance," SN Operations Research Forum, Springer, vol. 4(4), pages 1-27, December.
    9. William H. Aeberhard & Eva Cantoni & Chris Field & Hans R. Künsch & Joanna Mills Flemming & Ximing Xu, 2021. "Robust estimation for discrete‐time state space models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1127-1147, December.
    10. Christian Brinch, 2012. "Efficient simulated maximum likelihood estimation through explicitly parameter dependent importance sampling," Computational Statistics, Springer, vol. 27(1), pages 13-28, March.
    11. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    12. Ruggero Bellio & Nicola Soriani, 2021. "Maximum likelihood estimation based on the Laplace approximation for p2 network regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 24-41, February.
    13. Cole C Monnahan & Kasper Kristensen, 2018. "No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-10, May.
    14. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    15. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    16. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    17. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    18. Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
    19. David M Keith & Jessica A Sameoto & Freya M Keyser & Christine A Ward-Paige, 2020. "Evaluating socio-economic and conservation impacts of management: A case study of time-area closures on Georges Bank," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-25, October.
    20. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:160:y:2021:i:c:s016794732100061x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.