Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11336-023-09910-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
- Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
- Jamie L Hanson & Amitabh Chandra & Barbara L Wolfe & Seth D Pollak, 2011.
"Association between Income and the Hippocampus,"
PLOS ONE, Public Library of Science, vol. 6(5), pages 1-8, May.
- Hanson, Jamie L. & Chandra, Amitabh & Wolfe, Barbara Elizabeth & Pollak, Seth D., 2011. "Association between Income and the Hippocampus," Scholarly Articles 5341872, Harvard Kennedy School of Government.
- Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
- Simon N. Wood, 2020. "Rejoinder on: Inference and computation with Generalized Additive Models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 354-358, June.
- Steffen Fieuws & Geert Verbeke, 2006. "Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 424-431, June.
- Simon N. Wood, 2006. "Low-Rank Scale-Invariant Tensor Product Smooths for Generalized Additive Mixed Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1025-1036, December.
- Joe, Harry, 2008. "Accuracy of Laplace approximation for discrete response mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5066-5074, August.
- Minjeong Jeon & Sophia Rabe-Hesketh, 2012. "Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models With Factor Structures," Journal of Educational and Behavioral Statistics, , vol. 37(4), pages 518-542, August.
- Martin J. Dahl & Mara Mather & Sandra Düzel & Nils C. Bodammer & Ulman Lindenberger & Simone Kühn & Markus Werkle-Bergner, 2019. "Rostral locus coeruleus integrity is associated with better memory performance in older adults," Nature Human Behaviour, Nature, vol. 3(11), pages 1203-1214, November.
- Brent A. Coull & David Ruppert & M. P. Wand, 2001. "Simple Incorporation of Interactions into Additive Models," Biometrics, The International Biometric Society, vol. 57(2), pages 539-545, June.
- Wang Q. & Linton O. & Hardle W., 2004.
"Semiparametric Regression Analysis With Missing Response at Random,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
- Wolfgang Härdle & Oliver Linton & Wang, Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers CWP11/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wolfgang Härdle & Oliver Linton & Wang & Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers 11/03, Institute for Fiscal Studies.
- Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
- Simon N. Wood, 2013. "On p-values for smooth components of an extended generalized additive model," Biometrika, Biometrika Trust, vol. 100(1), pages 221-228.
- Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
- Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
- Härdle, Wolfgang & Huet, Sylvie & Mammen, Enno & Sperlich, Stefan, 2004.
"Bootstrap Inference In Semiparametric Generalized Additive Models,"
Econometric Theory, Cambridge University Press, vol. 20(2), pages 265-300, April.
- Hardle, Wolfgang & Huet, Sylvie & Mammen, Enno, 2000. "Bootstrap inference in semiparametric generalized additive models," DES - Working Papers. Statistics and Econometrics. WS 10079, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Härdle, Wolfgang & Huet, Sylvie & Mammen, Enno & Sperlich, Stefan, 2001. "Bootstrap Inference in Semiparametric Generalized Additive Models," Finance Working Papers 01-3, University of Aarhus, Aarhus School of Business, Department of Business Studies.
- William Meredith & John Tisak, 1990. "Latent curve analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 107-122, March.
- Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).
- Xin-Yuan Song & Zhao-Hua Lu & Jing-Heng Cai & Edward Ip, 2013. "A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 624-647, October.
- Arũnas P. Verbyla & Brian R. Cullis & Michael G. Kenward & Sue J. Welham, 1999. "The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 269-311.
- Ludwig Fahrmeir & Alexander Raach, 2007. "A Bayesian Semiparametric Latent Variable Model for Mixed Responses," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 327-346, September.
- Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
- Samuel Iddi & Geert Molenberghs, 2012. "A joint marginalized multilevel model for longitudinal outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2413-2430, July.
- Skaug, Hans J. & Fournier, David A., 2006. "Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 699-709, November.
- Sonja Greven & Thomas Kneib, 2010. "On the behaviour of marginal and conditional AIC in linear mixed models," Biometrika, Biometrika Trust, vol. 97(4), pages 773-789.
- Bates, Douglas & Eddelbuettel, Dirk, 2013. "Fast and Elegant Numerical Linear Algebra Using the RcppEigen Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i05).
- Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," Journal of Econometrics, Elsevier, vol. 128(2), pages 301-323, October.
- Silvia Cagnone & Paola Monari, 2013. "Latent variable models for ordinal data by using the adaptive quadrature approximation," Computational Statistics, Springer, vol. 28(2), pages 597-619, April.
- Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
- Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
- Driver, Charles C. & Oud, Johan H. L. & Voelkle, Manuel C., 2017. "Continuous Time Structural Equation Modeling with R Package ctsem," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i05).
- Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
- Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
- Mingan Yang & David Dunson, 2010. "Bayesian Semiparametric Structural Equation Models with Latent Variables," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 675-693, December.
- Comets, Emmanuelle & Lavenu, Audrey & Lavielle, Marc, 2017. "Parameter Estimation in Nonlinear Mixed Effect Models Using saemix, an R Implementation of the SAEM Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 80(i03).
- Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
- Johan Oud & Robert Jansen, 2000. "Continuous time state space modeling of panel data by means of sem," Psychometrika, Springer;The Psychometric Society, vol. 65(2), pages 199-215, June.
- Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
- Philip T. Reiss & R. Todd Ogden, 2009. "Smoothing parameter selection for a class of semiparametric linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 505-523, April.
- Gerhard Arminger & Bengt Muthén, 1998. "A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm," Psychometrika, Springer;The Psychometric Society, vol. 63(3), pages 271-300, September.
- Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
- Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "Generalized multilevel structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 167-190, June.
- Giampiero Marra & Simon N. Wood, 2012. "Coverage Properties of Confidence Intervals for Generalized Additive Model Components," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(1), pages 53-74, March.
- Nicholas J. Rockwood, 2020. "Maximum Likelihood Estimation of Multilevel Structural Equation Models with Random Slopes for Latent Covariates," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 275-300, June.
- Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
- X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
- Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2017.
"A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 484-496, April.
- Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2016. "A Simultaneous Equation Approach to Estimating HIV Prevalence with Non-Ignorable Missing Responses," Economics Working Papers 16-02, Queen's Management School, Queen's University Belfast.
- Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
- Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
- Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014.
"Modeling structural change in the European metropolitan areas during the process of economic integration,"
Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
- Christian Longhi & Antonio Musolesi & Catherine Baumont, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Post-Print halshs-01228053, HAL.
- Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Matthew Naveiras & Si On Yoon & Aaron Benjamin, 2023. "Incorporating Functional Response Time Effects into a Signal Detection Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 1056-1086, September.
- Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
- Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018.
"Unravelling the predictive power of telematics data in car insurance pricing,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Unraveling the predictive power of telematics data in car insurance pricing," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 552745, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Unraveling the predictive power of telematics data in car insurance pricing," Working Papers of Department of Decision Sciences and Information Management, Leuven 552745, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unraveling the predictive power of telematics data in car insurance pricing," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 618916, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unraveling the predictive power of telematics data in car insurance pricing," Working Papers of Department of Decision Sciences and Information Management, Leuven 618916, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Sylvie Charlot & Riccardo Crescenzi & Antonio Musolesi, 2014. "Augmented and Unconstrained: revisiting the Regional Knowledge Production Function," SEEDS Working Papers 2414, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
- Musolesi Antonio & Mazzanti Massimiliano, 2014.
"Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 521-541, December.
- Mazzanti, M. & Musolesi, A., 2013. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Working Papers 2013-08, Grenoble Applied Economics Laboratory (GAEL).
- Massimiliano Mazzanti & Antonio Musolesi, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," SEEDS Working Papers 2214, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
- Antonio Musolesi & Massimiliano Mazzanti, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic developement relation for advanced countries," Post-Print hal-01123027, HAL.
- Marra, Giampiero & Wyszynski, Karol, 2016. "Semi-parametric copula sample selection models for count responses," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 110-129.
- Marra, Giampiero & Radice, Rosalba, 2013. "Estimation of a regression spline sample selection model," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 158-173.
- Takuma Yoshida, 2016. "Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 278-303, November.
- Massimiliano Mazzanti & Antonio Musolesi, 2013.
"Nonlinearity, Heterogeneity and Unobserved Effects in the CO2-income Relation for Advanced Countries,"
Working Papers
2013.91, Fondazione Eni Enrico Mattei.
- Mazzanti, Massimiliano & Musolesi, Antonio, 2013. "Nonlinearity, Heterogeneity and Unobserved Effects in the CO2-income Relation for Advanced Countries," Climate Change and Sustainable Development 162374, Fondazione Eni Enrico Mattei (FEEM).
- Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
- Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
- Rodríguez-Álvarez, María Xosé & Lee, Dae-Jin & Kneib, Thomas & Durbán, María & Eilers, Paul, 2013. "Fast algorithm for smoothing parameter selection in multidimensional generalized P-splines," DES - Working Papers. Statistics and Econometrics. WS ws133026, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
- Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
More about this item
Keywords
brain and cognition; generalized additive mixed models; latent variable modeling; lifespan trajectories; mixed response;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:2:d:10.1007_s11336-023-09910-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.