IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i1d10.1007_s11336-021-09808-8.html
   My bibliography  Save this article

On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence

Author

Listed:
  • Domingo Morales

    (University Miguel Hernández de Elche)

  • Joscha Krause

    (Trier University)

  • Jan Pablo Burgard

    (Trier University)

Abstract

Major depression is a severe mental disorder that is associated with strongly increased mortality. The quantification of its prevalence on regional levels represents an important indicator for public health reporting. In addition to that, it marks a crucial basis for further explorative studies regarding environmental determinants of the condition. However, assessing the distribution of major depression in the population is challenging. The topic is highly sensitive, and national statistical institutions rarely have administrative records on this matter. Published prevalence figures as well as available auxiliary data are typically derived from survey estimates. These are often subject to high uncertainty due to large sampling variances and do not allow for sound regional analysis. We propose a new area-level Poisson mixed model that accounts for measurement errors in auxiliary data to close this gap. We derive the empirical best predictor under the model and present a parametric bootstrap estimator for the mean squared error. A method of moments algorithm for consistent model parameter estimation is developed. Simulation experiments are conducted to show the effectiveness of the approach. The methodology is applied to estimate the major depression prevalence in Germany on regional levels crossed by sex and age groups.

Suggested Citation

  • Domingo Morales & Joscha Krause & Jan Pablo Burgard, 2022. "On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 344-368, March.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:1:d:10.1007_s11336-021-09808-8
    DOI: 10.1007/s11336-021-09808-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09808-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09808-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Goebel & Peter Krause & Rainer Pischner & Ingo Sieber & Gert G. Wagner, 2008. "Daten- und Datenbankstruktur der Längsschnittstudie Sozio-oekonomisches Panel (SOEP)," SOEPpapers on Multidisciplinary Panel Data Research 89, DIW Berlin, The German Socio-Economic Panel (SOEP).
    2. Malay Ghosh & Karabi Sinha & Dalho Kim, 2006. "Empirical and Hierarchical Bayesian Estimation in Finite Population Sampling under Structural Measurement Error Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 591-608, September.
    3. Esther López-Vizcaíno & María José Lombardía & Domingo Morales, 2015. "Small area estimation of labour force indicators under a multinomial model with correlated time and area effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 535-565, June.
    4. Jan Pablo Burgard & María Dolores Esteban & Domingo Morales & Agustín Pérez, 2021. "Small area estimation under a measurement error bivariate Fay–Herriot model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 79-108, March.
    5. Malay Ghosh, 2004. "Small-area estimation based on natural exponential family quadratic variance function models and survey weights," Biometrika, Biometrika Trust, vol. 91(1), pages 95-112, March.
    6. Lynn M. R. Ybarra & Sharon L. Lohr, 2008. "Small area estimation when auxiliary information is measured with error," Biometrika, Biometrika Trust, vol. 95(4), pages 919-931.
    7. Tomáš Hobza & Domingo Morales & Laureano Santamaría, 2018. "Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 270-294, June.
    8. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238, April.
    9. Peter Haan & Anna Hammerschmid & Robert Lindner & Julia Schmieder, 2019. "Todesfälle durch Suizid, Alkohol und Drogen sinken deutlich bei Männern und Frauen in Ost- und Westdeutschland," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 86(7/8), pages 99-105.
    10. Isabel Molina & Ayoub Saei & M. José Lombardía, 2007. "Small area estimates of labour force participation under a multinomial logit mixed model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 975-1000, October.
    11. A. F. Militino & M. D. Ugarte & T. Goicoa, 2015. "Deriving small area estimates from information technology business surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 1051-1067, October.
    12. Serena Arima & William R. Bell & Gauri S. Datta & Carolina Franco & Brunero Liseo, 2017. "Multivariate Fay–Herriot Bayesian estimation of small area means under functional measurement error," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1191-1209, October.
    13. Jiang, Jiming & Nguyen, Thuan & Rao, J. Sunil, 2011. "Best Predictive Small Area Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 732-745.
    14. Torabi, Mahmoud, 2013. "Likelihood inference in generalized linear mixed measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 549-557.
    15. Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.
    16. Gert G. Wagner & Joachim R. Frick & Jürgen Schupp, 2007. "The German Socio-Economic Panel Study (SOEP) – Scope, Evolution and Enhancements," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 127(1), pages 139-169.
    17. Ray Chambers & Nicola Salvati & Nikos Tzavidis, 2016. "Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 453-479, February.
    18. Serena Arima & Silvia Polettini, 2019. "A unit level small area model with misclassified covariates," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1439-1462, October.
    19. Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.
    20. Serena Arima & Gauri S. Datta & Brunero Liseo, 2015. "Bayesian Estimators for Small Area Models when Auxiliary Information is Measured with Error," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 518-529, June.
    21. Shonosuke Sugasawa & Tatsuya Kubokawa & Kota Ogasawara, 2017. "Empirical Uncertain Bayes Methods in Area-level Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 684-706, September.
    22. Mahmoud Torabi & Gauri S. Datta & J. N. K. Rao, 2009. "Empirical Bayes Estimation of Small Area Means under a Nested Error Linear Regression Model with Measurement Errors in the Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 355-369, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Bugallo & Domingo Morales & María Dolores Esteban & Maria Chiara Pagliarella, 2024. "Model-Based Estimation of Small Area Dissimilarity Indexes: An Application to Sex Occupational Segregation in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 174(2), pages 473-501, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Pablo Burgard & María Dolores Esteban & Domingo Morales & Agustín Pérez, 2021. "Small area estimation under a measurement error bivariate Fay–Herriot model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 79-108, March.
    2. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "Robust prediction of domain compositions from uncertain data using isometric logratio transformations in a penalized multivariate Fay–Herriot model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 65-96, February.
    3. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    4. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "$$\ell _2$$ ℓ 2 -penalized approximate likelihood inference in logit mixed models for regional prevalence estimation under covariate rank-deficiency," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 459-489, May.
    5. Jan Pablo Burgard & María Dolores Esteban & Domingo Morales & Agustín Pérez, 2020. "A Fay–Herriot model when auxiliary variables are measured with error," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 166-195, March.
    6. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2023. "Small area estimation of average compositions under multivariate nested error regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 651-676, June.
    7. María Bugallo & Domingo Morales & María Dolores Esteban & Maria Chiara Pagliarella, 2024. "Model-Based Estimation of Small Area Dissimilarity Indexes: An Application to Sex Occupational Segregation in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 174(2), pages 473-501, September.
    8. Roberto Benavent & Domingo Morales, 2021. "Small area estimation under a temporal bivariate area-level linear mixed model with independent time effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 195-222, March.
    9. Stefano Marchetti & Caterina Giusti & Nicola Salvati & Monica Pratesi, 2017. "Small area estimation based on M-quantile models in presence of outliers in auxiliary variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 531-555, November.
    10. Priyanka Anjoy, 2023. "Hierarchical Bayes Measurement Error Small Area Model for Estimation of Disaggregated Level Workers Mobility Pattern in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(2), pages 339-361, June.
    11. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    12. Tomáš Hobza & Domingo Morales & Laureano Santamaría, 2018. "Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 270-294, June.
    13. Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
    14. Jan Pablo Burgard & Joscha Krause & Domingo Morales, 2022. "A measurement error Rao–Yu model for regional prevalence estimation over time using uncertain data obtained from dependent survey estimates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 204-234, March.
    15. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    16. Datta, Gauri S. & Torabi, Mahmoud & Rao, J.N.K. & Liu, Benmei, 2018. "Small area estimation with multiple covariates measured with errors: A nested error linear regression approach of combining multiple surveys," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 49-59.
    17. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    18. Erciulescu Andreea L. & Fuller Wayne A., 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Statistics Poland, vol. 17(1), pages 9-24, March.
    19. James Dawber & Nicola Salvati & Enrico Fabrizi & Nikos Tzavidis, 2022. "Expectile regression for multi‐category outcomes with application to small area estimation of labour force participation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 590-619, December.
    20. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    21. Serena Arima & William R. Bell & Gauri S. Datta & Carolina Franco & Brunero Liseo, 2017. "Multivariate Fay–Herriot Bayesian estimation of small area means under functional measurement error," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1191-1209, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:1:d:10.1007_s11336-021-09808-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.