Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data
Author
Abstract
Suggested Citation
DOI: 10.1111/insr.12485
Download full text from publisher
References listed on IDEAS
- Duncan Lee & Tereza Neocleous, 2010. "Bayesian quantile regression for count data with application to environmental epidemiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 905-920, November.
- Klaus Larsen & Jørgen Holm Petersen & Esben Budtz-Jørgensen & Lars Endahl, 2000. "Interpreting Parameters in the Logistic Regression Model with Random Effects," Biometrics, The International Biometric Society, vol. 56(3), pages 909-914, September.
- Gregory Kordas, 2006. "Smoothed binary regression quantiles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 387-407, April.
- Machado, Jose A.F. & Silva, J. M. C. Santos, 2005.
"Quantiles for Counts,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1226-1237, December.
- Jose A. F. Machado Machado & Joao Santos Silva Santos Silva, 2002. "Quantiles for counts," CeMMAP working papers CWP22/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- J.A.F. Machado & J. M. C. Santos Silva, 2003. "Quantiles for Counts," Econometrics 0303001, University Library of Munich, Germany.
- Yun Yang & Surya T. Tokdar, 2017. "Joint Estimation of Quantile Planes Over Arbitrary Predictor Spaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1107-1120, July.
- Maalouf, Maher & Trafalis, Theodore B., 2011. "Robust weighted kernel logistic regression in imbalanced and rare events data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 168-183, January.
- Ji-Ji Xing & Xi-Yuan Qian, 2017. "Bayesian expectile regression with asymmetric normal distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(9), pages 4545-4555, May.
- Khan, Shakeeb, 2013. "Distribution free estimation of heteroskedastic binary response models using Probit/Logit criterion functions," Journal of Econometrics, Elsevier, vol. 172(1), pages 168-182.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Manski, Charles F., 1985.
"Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator,"
Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
- Manski, Charles F., 1984. "Semiparametric Analysis Of Discrete Response: Asymptotic Properties Of The Maximum Score Estimator," SSRI Workshop Series 292595, University of Wisconsin-Madison, Social Systems Research Institute.
- Jason R. Blevins & Shakeeb Khan, 2013.
"Distribution-free estimation of heteroskedastic binary response models in Stata,"
Stata Journal, StataCorp LP, vol. 13(3), pages 588-602, September.
- Jason Blevins & Shakeeb Khan, 2015. "Distribution-Free Estimation of Heteroskedastic Binary Response Models in Stata," 2015 Stata Conference 19, Stata Users Group.
- Ludwig Fahrmeir & Alexander Raach, 2007. "A Bayesian Semiparametric Latent Variable Model for Mixed Responses," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 327-346, September.
- Artur J. Lemonte & Jorge L. Bazán, 2018. "New links for binary regression: an application to coca cultivation in Peru," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 597-617, September.
- Gregory Kordas, 2006. "Smoothed binary regression quantiles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 387-407.
- Benoit, Dries F. & Van den Poel, Dirk, 2017. "bayesQR: A Bayesian Approach to Quantile Regression," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i07).
- Reich, Brian J. & Fuentes, Montserrat & Dunson, David B., 2011. "Bayesian Spatial Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 6-20.
- Dries F. Benoit & Dirk Van den Poel, 2012. "Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1174-1188, November.
- Taddy, Matthew A. & Kottas, Athanasios, 2010. "A Bayesian Nonparametric Approach to Inference for Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 357-369.
- Athanasios Kottas & Milovan Krnjajić, 2009. "Bayesian Semiparametric Modelling in Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 297-319, June.
- Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
- Paolo Frumento & Nicola Salvati, 2021. "Parametric modeling of quantile regression coefficient functions with count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1237-1258, October.
- Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
- Chen, Le-Yu & Lee, Sokbae, 2018.
"Best subset binary prediction,"
Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
- Le-Yu Chen & Sokbae Lee, 2016. "Best Subset Binary Prediction," Papers 1610.02738, arXiv.org, revised May 2018.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Best subset binary prediction," CeMMAP working papers CWP50/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Best subset binary prediction," CeMMAP working papers 50/17, Institute for Fiscal Studies.
- Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
- Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
- Xuejun Jiang & Yunxian Li & Aijun Yang & Ruowei Zhou, 2020. "Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk," Empirical Economics, Springer, vol. 58(5), pages 2085-2103, May.
- Karthik Sriram & R. V. Ramamoorthi & Pulak Ghosh, 2016. "On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 87-104, February.
- Chawarat Rotejanaprasert & Andrew B. Lawson, 2018. "A Bayesian Quantile Modeling for Spatiotemporal Relative Risk: An Application to Adverse Risk Detection of Respiratory Diseases in South Carolina, USA," IJERPH, MDPI, vol. 15(9), pages 1-15, September.
- G. De Novellis & M. Doretti & G. E. Montanari & M. G. Ranalli & N. Salvati, 2024. "Performance evaluation of nursing homes using finite mixtures of logistic models and M-quantile regression for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 753-781, July.
- Fabrizi, Enrico & Salvati, Nicola & Trivisano, Carlo, 2020. "Robust Bayesian small area estimation based on quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
- Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
- Chen, Songnian & Zhang, Hanghui, 2015. "Binary quantile regression with local polynomial smoothing," Journal of Econometrics, Elsevier, vol. 189(1), pages 24-40.
- Das, Priyam & Ghosal, Subhashis, 2018. "Bayesian non-parametric simultaneous quantile regression for complete and grid data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 172-186.
- Pai, Jeffrey & Li, Yunxian & Yang, Aijun & Li, Chenxu, 2022. "Earthquake parametric insurance with Bayesian spatial quantile regression," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 1-12.
- Oh, Man-Suk & Park, Eun Sug & So, Beong-Soo, 2016. "Bayesian variable selection in binary quantile regression," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 177-181.
- Viviana Carcaiso & Leonardo Grilli, 2023. "Quantile regression for count data: jittering versus regression coefficients modelling in the analysis of credits earned by university students after remote teaching," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1061-1082, October.
- Rodrigues, T. & Dortet-Bernadet, J.-L. & Fan, Y., 2019. "Simultaneous fitting of Bayesian penalised quantile splines," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 93-109.
- V L Miguéis & D F Benoit & D Van den Poel, 2013.
"Enhanced decision support in credit scoring using Bayesian binary quantile regression,"
Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
- V. L. Miguéis & D. F. Benoit & D. Van Den Poel, 2012. "Enhanced Decision Support in Credit Scoring Using Bayesian Binary Quantile Regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/803, Ghent University, Faculty of Economics and Business Administration.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:90:y:2022:i:2:p:328-345. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.