IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v144y2020ics0167947319302312.html
   My bibliography  Save this article

Bayesian bridge-randomized penalized quantile regression

Author

Listed:
  • Tian, Yuzhu
  • Song, Xinyuan

Abstract

Quantile regression (QR) is an ideal alternative for depicting the conditional quantile functions of a response variable when the conditions of linear regression are unavailable. One advantage of QR in relation to the traditional mean regression is that the QR estimates are more robust against outliers and a large class of error distributions. Regularization methods have been verified to be effective in QR literature for simultaneously conducting parameter estimation and variable selection. This study considers a bridge-randomized penalty of regression coefficients by incorporating uncertainty penalty into Bayesian bridge QR. The asymmetric Laplace distribution (ALD) and the generalized Gaussian distribution (GGD) priors are imposed on model errors and regression coefficients, respectively, to establish a Bayesian bridge-randomized QR model. In addition, bridge penalty exponent is deemed as a parameter, and a Beta-distributed prior is forced on. By utilizing the normal-exponential and uniform-Gamma mixture representations of the ALD and the GGD, a Bayesian hierarchical model is constructed to conduct the fully Bayesian posterior inference. Gibbs sampler and Metropolis–Hastings algorithms are utilized to draw Markov chain Monte Carlo samples from the full conditional posterior distributions of all unknown parameters. Finally, the proposed procedures are illustrated by simulation studies and applied to a real-data analysis.

Suggested Citation

  • Tian, Yuzhu & Song, Xinyuan, 2020. "Bayesian bridge-randomized penalized quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302312
    DOI: 10.1016/j.csda.2019.106876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319302312
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.106876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Nicholas G. Polson & James G. Scott & Jesse Windle, 2014. "The Bayesian bridge," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(4), pages 713-733, September.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    4. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    5. Cheng, Cheng, 1995. "The Bernstein polynomial estimator of a smooth quantile function," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 321-330, September.
    6. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
    7. R. Alhamzawi & K. Yu & D. F. Benoit, 2011. "Bayesian adaptive Lasso quantile regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/728, Ghent University, Faculty of Economics and Business Administration.
    8. Himel Mallick & Nengjun Yi, 2018. "Bayesian bridge regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(6), pages 988-1008, April.
    9. Yuzhu Tian & Maozai Tian & Qianqian Zhu, 2014. "Linear Quantile Regression Based on EM Algorithm," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(16), pages 3464-3484, August.
    10. P.G. Sankaran & N.N. Midhu, 2017. "Nonparametric estimation of mean residual quantile function under right censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1856-1874, July.
    11. Bo Kai & Runze Li & Hui Zou, 2010. "Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 49-69, January.
    12. Jiancheng Jiang & Xuejun Jiang & Xinyuan Song, 2014. "Weighted composite quantile regression estimation of DTARCH models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 1-23, February.
    13. Saralees Nadarajah, 2006. "Acknowledgement of Priority: the Generalized Normal Distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(9), pages 1031-1032.
    14. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    15. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    16. Zhao, Weihua & Lian, Heng & Song, Xinyuan, 2017. "Composite quantile regression for correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 15-33.
    17. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    18. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    19. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    20. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    21. Reich, Brian J. & Fuentes, Montserrat & Dunson, David B., 2011. "Bayesian Spatial Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 6-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.
    2. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    3. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    4. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    6. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    7. Yu-Zhu Tian & Man-Lai Tang & Mao-Zai Tian, 2021. "Bayesian joint inference for multivariate quantile regression model with L $$_{1/2}$$ 1 / 2 penalty," Computational Statistics, Springer, vol. 36(4), pages 2967-2994, December.
    8. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    9. Yuzhu Tian & Manlai Tang & Yanchao Zang & Maozai Tian, 2018. "Quantile regression for linear models with autoregressive errors using EM algorithm," Computational Statistics, Springer, vol. 33(4), pages 1605-1625, December.
    10. Yanke Wu & Maozai Tian, 2017. "An effective method to reduce the computational complexity of composite quantile regression," Computational Statistics, Springer, vol. 32(4), pages 1375-1393, December.
    11. Rahim Alhamzawi, 2016. "Bayesian Analysis of Composite Quantile Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 358-373, October.
    12. Taha Alshaybawee & Habshah Midi & Rahim Alhamzawi, 2017. "Bayesian elastic net single index quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 853-871, April.
    13. Dengluan Dai & Anmin Tang & Jinli Ye, 2023. "High-Dimensional Variable Selection for Quantile Regression Based on Variational Bayesian Method," Mathematics, MDPI, vol. 11(10), pages 1-22, May.
    14. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2016. "Estimation of linear composite quantile regression using EM algorithm," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 183-191.
    15. Feng, Xiang-Nan & Wang, Yifan & Lu, Bin & Song, Xin-Yuan, 2017. "Bayesian regularized quantile structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 234-248.
    16. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
    17. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    18. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    19. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    20. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.