IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i15p2791-2812.html
   My bibliography  Save this article

Bayesian binary quantile regression for the analysis of Bachelor-to-Master transition

Author

Listed:
  • Cristina Mollica
  • Lea Petrella

Abstract

The multi-cycle organization of modern university systems stimulates the interest in studying the progression to higher level degree courses during the academic career. In particular, after the achievement of the first level qualification (Bachelor degree), students have to decide whether to continue their university studies, by enrolling in a second level (Master) programme, or to conclude their training experience. In this work we propose a binary quantile regression (BQR) approach to analyse the Bachelor-to-Master transition phenomenon with the adoption of the Bayesian inferential perspective. In addition to the traditional predictors of academic outcomes, such as the personal characteristics and the field of study, different aspects of student's performance are considered. Moreover, the role of a new contextual variable, representing the type of university regulations experienced during the academic path, is investigated. The utility of the Bayesian BQR to characterize the non-continuation decision after the first cycle studies is illustrated with an application to administrative data of Bachelor graduates at the School of Economics of Sapienza University of Rome. The method favourably compares with more conventional model specifications concerning the conditional mean of the binary response.

Suggested Citation

  • Cristina Mollica & Lea Petrella, 2017. "Bayesian binary quantile regression for the analysis of Bachelor-to-Master transition," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2791-2812, November.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:15:p:2791-2812
    DOI: 10.1080/02664763.2016.1263835
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1263835
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1263835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Cathy W.S. & Dong, Manh Cuong & Liu, Nathan & Sriboonchitta, Songsak, 2019. "Inferences of default risk and borrower characteristics on P2P lending," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    2. Sandra De Iaco & Sabrina Maggio & Donato Posa, 2019. "A Multilevel Multinomial Model for the Dynamics of Graduates Employment in Italy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 149-168, November.
    3. Philipp Gareis & Tom Broekel, 2022. "The Spatial Patterns of Student Mobility Before, During and After the Bologna Process in Germany," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 113(3), pages 290-309, July.
    4. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:15:p:2791-2812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.