IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v65y2003i3p227-232.html
   My bibliography  Save this article

The extended exponential power distribution and Bayesian robustness

Author

Listed:
  • Choy, S. T. Boris
  • Walker, Stephen G.

Abstract

In this paper, it is demonstrated that an extension to the exponential power family allows for robustness characteristics for the normal location parameter problem, previously thought to be restricted to the Student-t and a subclass of the positive stable families.

Suggested Citation

  • Choy, S. T. Boris & Walker, Stephen G., 2003. "The extended exponential power distribution and Bayesian robustness," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 227-232, November.
  • Handle: RePEc:eee:stapro:v:65:y:2003:i:3:p:227-232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00258-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. T. Boris Choy & Adrian F. M. Smith, 1997. "On Robust Analysis of a Normal Location Parameter," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 463-474.
    2. S. Choy & A. Smith, 1997. "Hierarchical models with scale mixtures of normal distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 205-221, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tumlinson, Samuel E., 2015. "On the non-existence of maximum likelihood estimates for the extended exponential power distribution and its generalizations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 111-114.
    2. Sandro Sapio, 2012. "Modeling the distribution of day-ahead electricity returns: a comparison," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1935-1949, December.
    3. Wan, Wai-Yin & Chan, Jennifer So-Kuen, 2011. "Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 687-702, January.
    4. Fung, Thomas & Seneta, Eugene, 2008. "A characterisation of scale mixtures of the uniform distribution," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2883-2888, December.
    5. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2021. "Posterior moments and quantiles for the normal location model with Laplace prior," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(17), pages 4039-4049, August.
    6. Saralees Nadarajah, 2006. "Acknowledgement of Priority: the Generalized Normal Distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(9), pages 1031-1032.
    7. Mao, Xiuping & Czellar, Veronika & Ruiz, Esther & Veiga, Helena, 2020. "Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation," Econometrics and Statistics, Elsevier, vol. 13(C), pages 84-105.
    8. Karol I. Santoro & Héctor J. Gómez & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2022. "Extended Half-Power Exponential Distribution with Applications to COVID-19 Data," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    9. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    2. Zhou, Yanju & Che, Yuan, 2021. "Research on Government Logistics Subsidies for Poverty Alleviation with Non-uniform Distribution of Consumers," Omega, Elsevier, vol. 104(C).
    3. Chan, Jennifer So Kuen & Wan, Wai Yin, 2014. "Multivariate generalized Poisson geometric process model with scale mixtures of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 72-87.
    4. Giuseppe De Luca & Jan Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted average least squares (WALS) estimator," Tinbergen Institute Discussion Papers 22-022/III, Tinbergen Institute.
    5. Stephen Walker, 1999. "The uniform power distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(4), pages 509-517.
    6. Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.
    7. Marín, J.M. & Rodríguez-Bernal, M.T., 2012. "Multiple hypothesis testing and clustering with mixtures of non-central t-distributions applied in microarray data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1898-1907.
    8. Kim, SungBum & Kim, Hyoung-Moon, 2022. "Series form of the characteristic functions of scale mixtures of multivariate skew-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 172-187.
    9. Victor Korolev, 2020. "Some Properties of Univariate and Multivariate Exponential Power Distributions and Related Topics," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    10. Dragone, Davide & Lambertini, Luca, 2020. "Equilibrium existence in the Hotelling model with convex production costs," Regional Science and Urban Economics, Elsevier, vol. 84(C).
    11. Dyskeland, Ole Kristian & Foros, Øystein, 2023. "Multihoming and market expansion: Effects on media platforms’ pricing and content creation incentives," Economics Letters, Elsevier, vol. 232(C).
    12. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    13. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    14. Kevin McNally, 2023. "How Valuable Are Small Measurement Datasets in Supplementing Occupational Exposure Models? A Numerical Study Using the Advanced Reach Tool," IJERPH, MDPI, vol. 20(7), pages 1-14, April.
    15. Baisen Liu & Liangliang Wang & Yunlong Nie & Jiguo Cao, 2021. "Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 428-445, September.
    16. Guo, Wen-Chung & Lai, Fu-Chuan, 2024. "R&D investments and location choices with three firms," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1448-1459.
    17. S.T. Boris Choy & Cathy W.S. Chen & Edward M.H. Lin, 2014. "Bivariate asymmetric GARCH models with heavy tails and dynamic conditional correlations," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1297-1313, July.
    18. Hong Feng & Jie Ma, 2018. "Location choices and third‐degree spatial price discrimination," Scottish Journal of Political Economy, Scottish Economic Society, vol. 65(2), pages 142-153, May.
    19. Kim, Hyoung-Moon, 2008. "A note on scale mixtures of skew normal distribution," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1694-1701, September.
    20. Chan, Jennifer S.K. & Leung, Doris Y.P. & Boris Choy, S.T. & Wan, Wai Y., 2009. "Nonignorable dropout models for longitudinal binary data with random effects: An application of Monte Carlo approximation through the Gibbs output," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4530-4545, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:65:y:2003:i:3:p:227-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.