Dynamics of a nonautonomous predator–prey dispersion–delay system with Beddington–DeAngelis functional response
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2007.09.082
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Zhijun & Chen, Lansun, 2007. "Periodic solution of a two-species competitive system with toxicant and birth pulse," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1703-1712.
- Naji, R.K. & Balasim, A.T., 2007. "On the dynamical behavior of three species food web model," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1636-1648.
- Jiang, Haijun & Teng, Zhidong, 2006. "Boundedness and global stability for nonautonomous recurrent neural networks with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 83-93.
- Huo, Hai-Feng & Li, Wan-Tong & Nieto, Juan J., 2007. "Periodic solutions of delayed predator–prey model with the Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 505-512.
- Dong, Lingzhen & Chen, Lansun & Shi, Peilin, 2007. "Periodic solutions for a two-species nonautonomous competition system with diffusion and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1916-1926.
- Chen, Yuanyuan & Yu, Jiang & Sun, Chengjun, 2007. "Stability and Hopf bifurcation analysis in a three-level food chain system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 683-694.
- Zhang, Shuwen & Chen, Lansun, 2006. "A study of predator–prey models with the Beddington–DeAnglis functional response and impulsive effect," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 237-248.
- Chang-Jian, Cai-Wan & Chen, Chao-Kuang, 2007. "Bifurcation and chaos analysis of a flexible rotor supported by turbulent long journal bearings," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1160-1179.
- Naji, Raid Kamel & Balasim, Alla Tariq, 2007. "Dynamical behavior of a three species food chain model with Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1853-1866.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gao, Yin & Gao, Jinwu & Yang, Xiangfeng, 2022. "The almost sure stability for uncertain delay differential equations based on normal lipschitz conditions," Applied Mathematics and Computation, Elsevier, vol. 420(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Min & Lv, Songjuan, 2009. "Chaos in a three-species food chain model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2305-2316.
- Florencia Carusela, M. & Momo, Fernando R. & Romanelli, Lilia, 2009. "Competition, predation and coexistence in a three trophic system," Ecological Modelling, Elsevier, vol. 220(19), pages 2349-2352.
- Raw, S.N. & Mishra, P. & Kumar, R. & Thakur, S., 2017. "Complex behavior of prey-predator system exhibiting group defense: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 100(C), pages 74-90.
- Kaviya, R. & Priyanka, M. & Muthukumar, P., 2022. "Mean-square exponential stability of impulsive conformable fractional stochastic differential system with application on epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
- Arenas, Abraham J. & González-Parra, Gilberto & Jódar, Lucas, 2009. "Periodic solutions of nonautonomous differential systems modeling obesity population," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1234-1244.
- Song, Qiankun & Wang, Zidong, 2008. "Neural networks with discrete and distributed time-varying delays: A general stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1538-1547.
- Behnia, Sohrab & Jafari, Amin & Soltanpoor, Wiria & Jahanbakhsh, Okhtay, 2009. "Nonlinear transitions of a spherical cavitation bubble," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 818-828.
- Sun, Chengjun & Loreau, Michel, 2009. "Dynamics of a three-species food chain model with adaptive traits," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2812-2819.
- Hiba Abdullah Ibrahim & Raid Kamel Naji, 2023. "The Impact of Fear on a Harvested Prey–Predator System with Disease in a Prey," Mathematics, MDPI, vol. 11(13), pages 1-28, June.
- Gupta, R.P. & Yadav, Dinesh K., 2023. "Nonlinear dynamics of a stage-structured interacting population model with honest signals and cues," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Sarif, Nawaj & Kumar, Arjun & Anshu, & Sarwardi, Sahabuddin & Dubey, Balram, 2024. "Spatio-temporal dynamics in a delayed prey–predator model with nonlinear prey refuge and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
- Swarnali Sharma & G. P. Samanta, 2013. "Mathematical Analysis of a Single-Species Population Model in a Polluted Environment with Discrete Time Delays," Journal of Mathematics, Hindawi, vol. 2013, pages 1-18, June.
- Zhao, Jiantao & Wei, Junjie, 2009. "Stability and bifurcation in a two harmful phytoplankton–zooplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1395-1409.
- Qiao, Meihong & Liu, Anping & Fory’s, Urszula, 2015. "The dynamics of a time delayed epidemic model on a population with birth pulse," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 166-174.
- Sen, Ayan & Mukherjee, Debasis, 2009. "Chaos in the delay logistic equation with discontinuous delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2126-2132.
- Dehao Ruan & Yao Lu, 2024. "Generalized Halanay Inequalities and Asymptotic Behavior of Nonautonomous Neural Networks with Infinite Delays," Mathematics, MDPI, vol. 12(1), pages 1-19, January.
- Upadhyay, Ranjit Kumar & Naji, Raid Kamel, 2009. "Dynamics of a three species food chain model with Crowley–Martin type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1337-1346.
- Ivanov, Tihomir & Dimitrova, Neli, 2017. "A predator–prey model with generic birth and death rates for the predator and Beddington–DeAngelis functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 111-123.
- Hu, Guang-Ping & Li, Wan-Tong & Yan, Xiang-Ping, 2009. "Hopf bifurcations in a predator–prey system with multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1273-1285.
- Chen, Yuanyuan & Changming, Song, 2008. "Stability and Hopf bifurcation analysis in a prey–predator system with stage-structure for prey and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1104-1114.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:2064-2075. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.