IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v270y2015icp909-925.html
   My bibliography  Save this article

On a nonlinear delay population model

Author

Listed:
  • Győri, István
  • Hartung, Ferenc
  • Mohamady, Nahed A.

Abstract

The nonlinear delay differential equation x˙(t)=r(t)[g(t,xt)−h(x(t))],t≥0 is considered. Sufficient conditions are established for the uniform permanence of the positive solutions of the equation. In several particular cases, explicit formulas are given for the upper and lower limit of the solutions. In some special cases, we give conditions which imply that all solutions have the same asymptotic behavior, in particular, when they converge to a periodic or constant steady-state.

Suggested Citation

  • Győri, István & Hartung, Ferenc & Mohamady, Nahed A., 2015. "On a nonlinear delay population model," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 909-925.
  • Handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:909-925
    DOI: 10.1016/j.amc.2015.08.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315011467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.08.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pal, D. & Mahapatra, G.S., 2016. "Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 109-124.
    2. Berezansky, Leonid & Braverman, Elena, 2016. "Boundedness and persistence of delay differential equations with mixed nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 154-169.
    3. Huang, Chuangxia & Yang, Xiaoguang & Cao, Jinde, 2020. "Stability analysis of Nicholson’s blowflies equation with two different delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 201-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:909-925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.