IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v484y2023ics0304380023001795.html
   My bibliography  Save this article

Analysis of interval-valued model for interaction between plankton-fish population in marine ecosystem

Author

Listed:
  • Renu,
  • Upadhyay, Ranjit Kumar
  • Tiwari, S.P.
  • Yadav, R.P.

Abstract

The crux of present investigation is to develop an interval-valued population model for the interaction between phytoplankton, zooplankton and fish population under cyrtoid type functional response. The present study is also concerned to analyze the mathematical model under impreciseness and the parametric functional form for an interval valued model parameters. The boundedness, existence of the solution, stability analysis and all possible feasible equilibrium points have been examined. The optimal harvesting strategy has been implemented and obtained the optimal solution with the help of the Pontryagin maximum principle. The significant impact of interval valued biological parameters has been analyzed and portrayed by means of graph for given different fit values, approximate to the model system in real scenario.

Suggested Citation

  • Renu, & Upadhyay, Ranjit Kumar & Tiwari, S.P. & Yadav, R.P., 2023. "Analysis of interval-valued model for interaction between plankton-fish population in marine ecosystem," Ecological Modelling, Elsevier, vol. 484(C).
  • Handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023001795
    DOI: 10.1016/j.ecolmodel.2023.110448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023001795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patoghi, Amirhosein & Mousavi, Seyed Meysam, 2021. "A new approach for material ordering and multi-mode resource constraint project scheduling problem in a multi-site context under interval-valued fuzzy uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Panja, Prabir & Mondal, Shyamal Kumar & Jana, Dipak Kumar, 2017. "Effects of toxicants on Phytoplankton-Zooplankton-Fish dynamics and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 389-399.
    3. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Das, Kalyan & Ray, Santanu, 2008. "Effect of delay on nutrient cycling in phytoplankton–zooplankton interactions in estuarine system," Ecological Modelling, Elsevier, vol. 215(1), pages 69-76.
    5. Ghanbari, Behzad & Gómez-Aguilar, J.F., 2018. "Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 114-120.
    6. Zhao, Shengnan & Yuan, Sanling & Zhang, Tonghua, 2022. "The impact of environmental fluctuations on a plankton model with toxin-producing phytoplankton and patchy agglomeration," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. da Silva Peixoto, Magda & de Barros, Laécio Carvalho & Bassanezi, Rodney Carlos, 2008. "Predator–prey fuzzy model," Ecological Modelling, Elsevier, vol. 214(1), pages 39-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Kritika, & Agarwal, Ritu & Purohit, Sunil Dutt, 2020. "Mathematical model for anomalous subdiffusion using comformable operator," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    4. Khader, M.M. & Inc, Mustafa, 2021. "Numerical technique based on the interpolation with Lagrange polynomials to analyze the fractional variable-order mathematical model of the hepatitis C with different types of virus genome," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Sajan, & Kumar Choudhary, Kapil & Dubey, Balram, 2023. "A non-autonomous approach to study the impact of environmental toxins on nutrient-plankton system," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    7. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    8. Mahmoud, Emad E. & Trikha, Pushali & Jahanzaib, Lone Seth & Almaghrabi, Omar A., 2020. "Dynamical analysis and chaos control of the fractional chaotic ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    11. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    12. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    13. Alam, Mehboob & Zada, Akbar, 2022. "Implementation of q-calculus on q-integro-differential equation involving anti-periodic boundary conditions with three criteria," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    14. Panja, Prabir & Mondal, Shyamal Kumar & Jana, Dipak Kumar, 2017. "Effects of toxicants on Phytoplankton-Zooplankton-Fish dynamics and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 389-399.
    15. Liaqat, Muhammad Imran & Akgül, Ali, 2022. "A novel approach for solving linear and nonlinear time-fractional Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    16. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    17. Thakur, Nilesh Kumar & Ojha, Archana & Tiwari, Pankaj Kumar & Upadhyay, Ranjit Kumar, 2021. "An investigation of delay induced stability transition in nutrient-plankton systems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Hari Mohan Srivastava & Khaled M. Saad, 2020. "A Comparative Study of the Fractional-Order Clock Chemical Model," Mathematics, MDPI, vol. 8(9), pages 1-14, August.
    19. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. Li, Peiluan & Gao, Rong & Xu, Changjin & Ahmad, Shabir & Li, Ying & Akgül, Ali, 2023. "Bifurcation behavior and PDγ control mechanism of a fractional delayed genetic regulatory model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023001795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.