IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i4p1440-1447.html
   My bibliography  Save this article

Stability and chaos of LMSER PCA learning algorithm

Author

Listed:
  • Lv, Jian Cheng
  • Yi, Zhang

Abstract

LMSER PCA algorithm is a principal components analysis algorithm. It is used to extract principal components on-line from input data. The algorithm has both stability and chaotic dynamic behavior under some conditions. This paper studies the local stability of the LMSER PCA algorithm via a corresponding deterministic discrete time system. Conditions for local stability are derived. The paper also explores the chaotic behavior of this algorithm. It shows that the LMSER PCA algorithm can produce chaos. Waveform plots, Lyapunov exponents and bifurcation diagrams are presented to illustrate the existence of chaotic behavior of this algorithm.

Suggested Citation

  • Lv, Jian Cheng & Yi, Zhang, 2007. "Stability and chaos of LMSER PCA learning algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1440-1447.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1440-1447
    DOI: 10.1016/j.chaos.2005.11.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905011598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.11.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing, Zhujun & Yang, Jianping, 2006. "Bifurcation and chaos in discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 259-277.
    2. Wang, Xuedi & Tian, Lixin, 2006. "Bifurcation analysis and linear control of the Newton–Leipnik system," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 31-38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Jian Cheng & Yi, Zhang, 2007. "Some chaotic behaviors in a MCA learning algorithm with a constant learning rate," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1040-1047.
    2. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Bifurcation control of the Hodgkin–Huxley equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 217-224.
    3. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
    5. Chen, Yanguang, 2009. "Spatial interaction creates period-doubling bifurcation and chaos of urbanization," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1316-1325.
    6. Sun, Huijing & Cao, Hongjun, 2007. "Bifurcations and chaos of a delayed ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1383-1393.
    7. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Analysis and control of the bifurcation of Hodgkin–Huxley model," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 247-256.
    8. Xu, Rui & Ma, Zhien, 2008. "Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 669-684.
    9. Jia, Qiang, 2008. "Chaos control and synchronization of the Newton–Leipnik chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 814-824.
    10. Yijie Li & Zhiming Guo, 2022. "Wolbachia Invasion Dynamics by Integrodifference Equations," Mathematics, MDPI, vol. 10(22), pages 1-13, November.
    11. Zhang, Xue & Zhang, Qing-ling & Zhang, Yue, 2009. "Bifurcations of a class of singular biological economic models," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1309-1318.
    12. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    13. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    14. McAllister, A. & McCartney, M. & Glass, D.H., 2023. "Stability, collapse and hyperchaos in a class of tri-trophic predator–prey models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    15. Zhao, Jiantao & Wei, Junjie, 2009. "Stability and bifurcation in a two harmful phytoplankton–zooplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1395-1409.
    16. Salman, S.M. & Yousef, A.M. & Elsadany, A.A., 2016. "Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 20-31.
    17. Guangye Chen & Zhidong Teng & Zengyun Hu, 2011. "Analysis of stability for a discrete ratio-dependent predator-prey system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 42(1), pages 1-26, February.
    18. Simas, Fabiano C. & Nobrega, K.Z. & Bazeia, D., 2022. "Bifurcation and chaos in one dimensional chains of small particles," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    19. Jiang, Yongxin & Yang, Jianping, 2009. "Complex dynamics in a food chain with slow and fast processes," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3160-3168.
    20. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:4:p:1440-1447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.