IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v29y2006i1p23-35.html
   My bibliography  Save this article

Fractal black holes and information

Author

Listed:
  • Naschie, M.S. El

Abstract

If nature is fractal as it evidently is, at classical resolution and if it is suspected to also be fractal at the quantum resolution as it is now a days generally believed to be, then we must have over looked at least two points or so in our physical model building of mini black holes. To start with at such ultra high resolution, the mini black hole geometry must be a fractal. Consequently we have zero volume and only a fractal surface area. Second because we cannot take the differential limit for the ℓp2 covering the transfinite surface area, there will be many gaps between the (ℓp)2 tilings. In other words we must introduce transfinite corrections to the final result. Proceeding this way the information entropy unit of a black hole should bea=I=(7+ϕ3)(10)-66cm2=7.23606799(10)-66cm2The nearest classical result to the above is that obtained by Gerard ‘t Hoofta=I=(0.724)(10)-65cm2The paper ends with a general discussion of E-infinity theory and its possible relation with ‘t Hooft’s holographic principle and his gluons–quark strings.

Suggested Citation

  • Naschie, M.S. El, 2006. "Fractal black holes and information," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 23-35.
  • Handle: RePEc:eee:chsofr:v:29:y:2006:i:1:p:23-35
    DOI: 10.1016/j.chaos.2005.11.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905011720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.11.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2005. "On a class of fuzzy Kähler-like manifolds," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 257-261.
    2. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    3. El Naschie, M.S., 2006. "Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 297-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yongping & Sun, Weihua & Liu, Shutang, 2009. "Control of generalized Julia sets," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1738-1744.
    2. Zheng, Jing & Lin, Zhengyan & Tong, Changqing, 2009. "The Hausdorff dimension of the range for the Markov processes of Ornstein–Uhlenbeck type," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2008-2013.
    3. Sidharth, B.G., 2006. "Strings and Planck oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 300-311.
    4. Chiou, Juing-Shian & Cheng, Chun-Ming, 2009. "Stabilization analysis of the switched discrete-time systems using Lyapunov stability theorem and genetic algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 751-759.
    5. Altun, Ishak & Sahin, Hakan & Aslantas, Mustafa, 2021. "A new approach to fractals via best proximity point," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. El Naschie, M.S., 2006. "On two new fuzzy Kähler manifolds, Klein modular space and ’t Hooft holographic principles," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 876-881.
    7. Nozari, Kourosh & Mehdipour, S. Hamid, 2009. "Failure of standard thermodynamics in planck scale black hole system," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 956-970.
    8. El Naschie, Mohamed Saladin, 2006. "Is gravity less fundamental than elementary particles theory? Critical remarks on holography and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 803-807.
    9. Gottlieb, I. & Agop, M., 2007. "El Naschie’s ε(∞) theory and an alternative to gauged spacetime scale relativity theory," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1025-1029.
    10. Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.
    11. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Construction and characterizations of orthogonal vector-valued multivariate wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1835-1844.
    12. Singh, S.L. & Prasad, Bhagwati & Kumar, Ashish, 2009. "Fractals via iterated functions and multifunctions," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1224-1231.
    13. Yin, Xin-An & Yang, Xiao-Hua & Yang, Zhi-Feng, 2009. "Using the R/S method to determine the periodicity of time series," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 731-745.
    14. El Naschie, M.S., 2008. "High energy physics and the standard model from the exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 1-17.
    15. Agop, M. & Enache, V., 2007. "Gauge theories on El Naschie’s ε(∞) space-time topology," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 296-301.
    16. Dai, Meifeng & Liu, Xi, 2008. "The Hausdorff and box-counting dimensions of a class of recurrent sets," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 532-538.
    17. Naschie, M.S. El, 2006. "Holographic correspondence and quantum gravity in E-infinity spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 871-875.
    18. Singh, S.L. & Jain, Sarika & Mishra, S.N., 2009. "A new approach to superfractals," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3110-3120.
    19. Chen, Ning & Hao, Ding & Tang, Ming, 2009. "Automatic generation of symmetric IFSs contracted in the hyperbolic plane," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 829-842.
    20. Llorens-Fuster, Enrique & Petruşel, Adrian & Yao, Jen-Chih, 2009. "Iterated function systems and well-posedness," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1561-1568.
    21. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, Mohamed Saladin, 2006. "Is gravity less fundamental than elementary particles theory? Critical remarks on holography and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 803-807.
    2. El Naschie, M.S., 2006. "Holographic dimensional reduction: Center manifold theorem and E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 816-822.
    3. El Naschie, M.S., 2006. "E-infinity theory—Some recent results and new interpretations," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 845-853.
    4. Materassi, Massimo & Wernik, Andrzej W. & Yordanova, Emiliya, 2006. "Statistics in the p-model," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 642-655.
    5. El Naschie, M.S., 2006. "An elementary proof for the nine missing particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1136-1138.
    6. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    7. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.
    8. Sidharth, B.G., 2006. "Strings and Planck oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 300-311.
    9. He, Ji-Huan, 2006. "Application of E-infinity theory to turbulence," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 506-511.
    10. El Naschie, M.S., 2006. "Superstrings, entropy and the elementary particles content of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 48-54.
    11. Sun, Lei & Cheng, Zhengxing & Huang, Yongdong, 2007. "Construction of trivariate biorthogonal compactly supported wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1412-1420.
    12. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    13. Huang, Yongdong & Cheng, Zhengxing, 2007. "Minimum-energy frames associated with refinable function of arbitrary integer dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 503-515.
    14. Sergeyev, Yaroslav D., 2009. "Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3042-3046.
    15. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    16. Qiu, Hua & Su, Weiyi, 2007. "3-Adic Cantor function on local fields and its p-adic derivative," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1625-1634.
    17. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    18. El Naschie, M.S., 2007. "Determining the number of Fermions and the number of Boson separately in an extended standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1241-1243.
    19. Mesón, Alejandro & Vericat, Fernando, 2009. "Simultaneous multifractal decompositions for the spectra of local entropies and ergodic averages," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2353-2363.
    20. El Naschie, M.S., 2006. "On two new fuzzy Kähler manifolds, Klein modular space and ’t Hooft holographic principles," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 876-881.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:29:y:2006:i:1:p:23-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.