IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i4p1835-1844.html
   My bibliography  Save this article

Construction and characterizations of orthogonal vector-valued multivariate wavelet packets

Author

Listed:
  • Chen, Qingjiang
  • Cao, Huaixin
  • Shi, Zhi

Abstract

In this paper, the notion of orthogonal vector-valued wavelet packets of the space L2(Rs,Cd) is introduced. A method for constructing the orthogonal vector-valued wavelet packets is presented. Their properties are investigated by virtue of time–frequency analysis method, matrix theory and finite group theory, and three orthogonality formulas with respect to the wavelet packets are established. Orthogonal decomposition relation formulas of L2(Rs,Cd) are obtained by constructing a series of subspaces of vector-valued wavelet packets. In particular, it is shown how to construct various orthonormal bases of L2(Rs,Cd) from these wavelet packets.

Suggested Citation

  • Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Construction and characterizations of orthogonal vector-valued multivariate wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1835-1844.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:1835-1844
    DOI: 10.1016/j.chaos.2007.09.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907008132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.09.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Qingjiang & Cheng, Zhengxing, 2007. "A study on compactly supported orthogonal vector-valued wavelets and wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 1024-1034.
    2. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    3. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    4. Svozil, Karl, 2005. "Computational universes," Chaos, Solitons & Fractals, Elsevier, vol. 25(4), pages 845-859.
    5. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    6. Huang, Yongdong & Cheng, Zhengxing, 2007. "Minimum-energy frames associated with refinable function of arbitrary integer dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 503-515.
    7. El Naschie, M.S., 2006. "Superstring theory: What it cannot do but E-infinity could," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 65-68.
    8. Naschie, M.S. El, 2006. "Fractal black holes and information," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 23-35.
    9. El Naschie, M.S., 2006. "Hilbert space, the number of Higgs particles and the quantum two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 9-13.
    10. Chen, Qingjiang & Cheng, Zhengxing & Wang, Cuiling, 2007. "Affine pseudoframes for subspaces of L2(R) associated with a generalized multiresolution structure," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1401-1411.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, De-you & Du, Shu-de & Cheng, Zheng-xing, 2009. "Design and properties of vector-valued wavelets associated with an orthogonal vector-valued scaling function," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1368-1376.
    2. Chen, Qingjiang & Huo, Ailian, 2009. "The research of a class of biorthogonal compactly supported vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 951-961.
    3. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Design and characterizations of a class of orthogonal multiple vector-valued wavelets with 4-scale," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 91-102.
    4. Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.
    5. Han, Jincang & Cheng, Zhengxing & Chen, Qingjiang, 2009. "A study of biorthogonal multiple vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1574-1587.
    6. Chen, Qingjiang & Shi, Zhi, 2008. "Construction and properties of orthogonal matrix-valued wavelets and wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 75-86.
    7. Huang, Yongdong & Cheng, Zhengxing, 2007. "Minimum-energy frames associated with refinable function of arbitrary integer dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 503-515.
    8. Li, Dengfeng & Wu, Guochang, 2009. "Construction of a class of Daubechies type wavelet bases," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 620-625.
    9. Huang, Yongdong & Lei, Chongmin & Yang, Miao, 2009. "The construction of a class of trivariate nonseparable compactly supported orthogonal wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1530-1537.
    10. Iovane, Gerardo & Giordano, Paola, 2007. "Wavelets and multiresolution analysis: Nature of ε(∞) Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 896-910.
    11. Sun, Lei & Cheng, Zhengxing, 2007. "Construction of a class of compactly supported orthogonal vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 253-261.
    12. Liu, Zhanwei & Hu, Guoen & Wu, Guochang & Jiang, Bin, 2008. "Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1449-1456.
    13. Chen, Qingjiang & Shi, Zhi, 2008. "Biorthogonal multiple vector-valued multivariate wavelet packets associated with a dilation matrix," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 323-332.
    14. Chen, Qingjiang & Zhao, Yanhui & Gao, Hongwei, 2009. "Existence and characterization of orthogonal multiple vector-valued wavelets with three-scale," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2484-2493.
    15. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    16. Wang, Xiao-Feng & Gao, Hongwei & Jinshun, Feng, 2009. "The characterization of vector-valued multivariate wavelet packets associated with a dilation matrix," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 1959-1966.
    17. Wu, Guochang & Li, Zhiqiang & Cheng, Zhengxing, 2009. "Construction of wavelets with composite dilations," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2447-2456.
    18. Zhu, Xiuge & Wu, Guochang, 2009. "A characteristic description of orthonormal wavelet on subspace LE2(R) of L2(R)," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2484-2490.
    19. Chen, Qingjiang & Cheng, Zhengxing & Wang, Cuiling, 2007. "Affine pseudoframes for subspaces of L2(R) associated with a generalized multiresolution structure," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1401-1411.
    20. Sun, Lei & Cheng, Zhengxing & Huang, Yongdong, 2007. "Construction of trivariate biorthogonal compactly supported wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1412-1420.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:4:p:1835-1844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.