IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v29y2006i4p803-807.html
   My bibliography  Save this article

Is gravity less fundamental than elementary particles theory? Critical remarks on holography and E-infinity theory

Author

Listed:
  • El Naschie, Mohamed Saladin

Abstract

This work is concerned with showing, using various arguments, the possibility of giving an interpretation of the fundamental interactions conveying a mental picture in which gravity and general relativity would appear to be less fundamental than high energy particle physics.

Suggested Citation

  • El Naschie, Mohamed Saladin, 2006. "Is gravity less fundamental than elementary particles theory? Critical remarks on holography and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 803-807.
  • Handle: RePEc:eee:chsofr:v:29:y:2006:i:4:p:803-807
    DOI: 10.1016/j.chaos.2006.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906000567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2005. "On a class of fuzzy Kähler-like manifolds," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 257-261.
    2. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    3. El Naschie, M.S., 2006. "Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 297-330.
    4. Naschie, M.S. El, 2006. "Fractal black holes and information," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 23-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Naschie, M.S., 2007. "Gauge anomalies, SU(N) irreducible representation and the number of elementary particles of a minimally extended standard model," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 14-16.
    2. Saniga, Metod & Planat, Michel, 2008. "Projective planes over “Galois” double numbers and a geometrical principle of complementarity," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 374-381.
    3. Anderson, Ronald & Joshi, G.C., 2008. "Interpreting mathematics in physics: Charting the applications of SU(2) in 20th century physics," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 397-404.
    4. El Naschie, M.S., 2006. "Is Einstein’s general field equation more fundamental than quantum field theory and particle physics?," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 525-531.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    2. Sidharth, B.G., 2006. "Strings and Planck oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 300-311.
    3. El Naschie, M.S., 2006. "Holographic dimensional reduction: Center manifold theorem and E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 816-822.
    4. Naschie, M.S. El, 2006. "Fractal black holes and information," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 23-35.
    5. El Naschie, M.S., 2006. "On two new fuzzy Kähler manifolds, Klein modular space and ’t Hooft holographic principles," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 876-881.
    6. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Construction and characterizations of orthogonal vector-valued multivariate wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1835-1844.
    7. Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.
    8. El Naschie, M.S., 2006. "E-infinity theory—Some recent results and new interpretations," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 845-853.
    9. Materassi, Massimo & Wernik, Andrzej W. & Yordanova, Emiliya, 2006. "Statistics in the p-model," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 642-655.
    10. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.
    11. Naschie, M.S. El, 2006. "Holographic correspondence and quantum gravity in E-infinity spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 871-875.
    12. He, Ji-Huan, 2006. "Application of E-infinity theory to turbulence," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 506-511.
    13. El Naschie, M.S., 2006. "An elementary proof for the nine missing particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1136-1138.
    14. El Naschie, M.S., 2006. "Superstrings, entropy and the elementary particles content of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 48-54.
    15. Sun, Lei & Cheng, Zhengxing & Huang, Yongdong, 2007. "Construction of trivariate biorthogonal compactly supported wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1412-1420.
    16. Azab Abd-Allah, M. & El-Saady, Kamal & Ghareeb, A., 2009. "Rough intuitionistic fuzzy subgroup," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2145-2153.
    17. ElOkaby, Ayman A., 2007. "A short review of the Higgs boson mass and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 14-25.
    18. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    19. Huang, Yongdong & Cheng, Zhengxing, 2007. "Minimum-energy frames associated with refinable function of arbitrary integer dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 503-515.
    20. Sergeyev, Yaroslav D., 2009. "Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3042-3046.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:29:y:2006:i:4:p:803-807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.