IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v28y2006i5p1136-1138.html
   My bibliography  Save this article

An elementary proof for the nine missing particles of the standard model

Author

Listed:
  • El Naschie, M.S.

Abstract

Several authors have recently argued that a “complete” standard model should include nine more elementary particles besides the 60 already believed to be experimentally confirmed. The present short note gives an elementary and convincing proof for the correctness of this conjecture.

Suggested Citation

  • El Naschie, M.S., 2006. "An elementary proof for the nine missing particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 28(5), pages 1136-1138.
  • Handle: RePEc:eee:chsofr:v:28:y:2006:i:5:p:1136-1138
    DOI: 10.1016/j.chaos.2005.10.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905010167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.10.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marek-Crnjac, L., 2006. "Different Higgs models and the number of Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 575-579.
    2. Stakhov, Alexey, 2006. "Fundamentals of a new kind of mathematics based on the Golden Section," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1124-1146.
    3. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    4. El Naschie, M.S., 2006. "Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 297-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Naschie, M. Saladin, 2006. "Intermediate prerequisites for E-infinity theory (Further recommended reading in nonlinear dynamics and mathematical physics)," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 622-628.
    2. Marek-Crnjac, L., 2007. "The maximum number of elementary particles in a super symmetric extension of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1631-1636.
    3. He, Ji-Huan, 2007. "The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 346-351.
    4. He, Ji-Huan, 2007. "E-Infinity theory and the Higgs field," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 782-786.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.
    2. Estrada, Ernesto, 2007. "Graphs (networks) with golden spectral ratio," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1168-1182.
    3. Büyükkılıç, F. & Demirhan, D., 2009. "Cumulative growth with fibonacci approach, golden section and physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 24-32.
    4. El Naschie, M.S., 2006. "E-infinity theory—Some recent results and new interpretations," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 845-853.
    5. El-Okaby, Ayman A., 2008. "The exceptional E-infinity theory holographic boundary, F-theory and the number of particles in the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1286-1291.
    6. El Naschie, M.S., 2006. "Is Einstein’s general field equation more fundamental than quantum field theory and particle physics?," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 525-531.
    7. ElOkaby, Ayman A., 2007. "A short review of the Higgs boson mass and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 14-25.
    8. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    9. El Naschie, Mohamed Saladin, 2006. "Is gravity less fundamental than elementary particles theory? Critical remarks on holography and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 803-807.
    10. El Naschie, M.S., 2006. "Holographic dimensional reduction: Center manifold theorem and E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 816-822.
    11. Naschie, M.S. El, 2006. "Fractal black holes and information," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 23-35.
    12. He, Ji-Huan, 2006. "Application of E-infinity theory to turbulence," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 506-511.
    13. El Naschie, M.S., 2006. "Superstrings, entropy and the elementary particles content of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 48-54.
    14. Mahmoud, I.S., 2006. "The Higgs mass using E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 263-268.
    15. Sun, Lei & Cheng, Zhengxing & Huang, Yongdong, 2007. "Construction of trivariate biorthogonal compactly supported wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1412-1420.
    16. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    17. Huang, Yongdong & Cheng, Zhengxing, 2007. "Minimum-energy frames associated with refinable function of arbitrary integer dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 503-515.
    18. Sergeyev, Yaroslav D., 2009. "Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3042-3046.
    19. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    20. Qiu, Hua & Su, Weiyi, 2007. "3-Adic Cantor function on local fields and its p-adic derivative," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1625-1634.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:28:y:2006:i:5:p:1136-1138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.