IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i4p2008-2013.html
   My bibliography  Save this article

The Hausdorff dimension of the range for the Markov processes of Ornstein–Uhlenbeck type

Author

Listed:
  • Zheng, Jing
  • Lin, Zhengyan
  • Tong, Changqing

Abstract

In this paper, the Hausdorff dimension of the range for a Markov process of Ornstein–Uhlenbeck type {X(t),t∈R+} on R is given. We also investigate the Hausdorff dimension of the process in Rd case.

Suggested Citation

  • Zheng, Jing & Lin, Zhengyan & Tong, Changqing, 2009. "The Hausdorff dimension of the range for the Markov processes of Ornstein–Uhlenbeck type," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2008-2013.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2008-2013
    DOI: 10.1016/j.chaos.2009.03.169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790900318X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfe, Stephen James, 1982. "On a continuous analogue of the stochastic difference equation Xn=[rho]Xn-1+Bn," Stochastic Processes and their Applications, Elsevier, vol. 12(3), pages 301-312, May.
    2. El Naschie, M.S., 2008. "Notes on exceptional lie symmetry groups hierarchy and possible implications for E-Infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 67-70.
    3. Sato, Ken-iti & Yamazato, Makoto, 1984. "Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type," Stochastic Processes and their Applications, Elsevier, vol. 17(1), pages 73-100, May.
    4. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    5. Naschie, M.S. El, 2006. "Fractal black holes and information," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 23-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maejima, Makoto & Ueda, Yohei, 2010. "[alpha]-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2363-2389, December.
    2. Liu, Zhanwei & Hu, Guoen & Lu, Zhibo, 2009. "Parseval frame scaling sets and MSF Parseval frame wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1966-1974.
    3. Li, Dengfeng & Wu, Guochang, 2009. "Construction of a class of Daubechies type wavelet bases," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 620-625.
    4. Liu, Zhanwei & Hu, Guoen & Wu, Guochang & Jiang, Bin, 2008. "Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1449-1456.
    5. Brockwell, Peter J. & Lindner, Alexander, 2015. "Prediction of Lévy-driven CARMA processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 263-271.
    6. Nozari, Kourosh & Mehdipour, S. Hamid, 2009. "Failure of standard thermodynamics in planck scale black hole system," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 956-970.
    7. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Construction and characterizations of orthogonal vector-valued multivariate wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1835-1844.
    8. El Naschie, M.S., 2008. "High energy physics and the standard model from the exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 1-17.
    9. Zhu, Xiuge & Wu, Guochang, 2009. "A characteristic description of orthonormal wavelet on subspace LE2(R) of L2(R)," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2484-2490.
    10. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    11. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    12. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    13. El Naschie, M.S., 2009. "Arguments for the compactness and multiple connectivity of our cosmic spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2787-2789.
    14. El Naschie, M.S., 2008. "Quarks confinement," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 6-8.
    15. El Naschie, M.S., 2006. "On two new fuzzy Kähler manifolds, Klein modular space and ’t Hooft holographic principles," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 876-881.
    16. Yin, Xin-An & Yang, Xiao-Hua & Yang, Zhi-Feng, 2009. "Using the R/S method to determine the periodicity of time series," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 731-745.
    17. Liang, Y.S. & Su, W.Y., 2007. "The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 682-692.
    18. Chen, Ning & Hao, Ding & Tang, Ming, 2009. "Automatic generation of symmetric IFSs contracted in the hyperbolic plane," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 829-842.
    19. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    20. El Naschie, M.S., 2008. "The fundamental algebraic equations of the constants of nature," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 320-322.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:2008-2013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.