IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i4p1676-1683.html
   My bibliography  Save this article

Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases

Author

Listed:
  • Chen, Qing-Jiang
  • Qu, Xiao-Gang

Abstract

In this paper, we introduce vector-valued non-separable higher-dimensional wavelet packets with an arbitrary integer dilation factor. An approach for constructing vector-valued higher-dimensional wavelet packet bases is proposed. Their characteristics are investigated by means of harmonic analysis method, matrix theory and operator theory, and three orthogonality formulas concerning the wavelet packets are presented. Orthogonal decomposition relation formulas of the space L2(Rn)p are derived by designing a series of subspaces of the vector-valued wavelet packets. Moreover, several orthonormal wavelet packet bases of L2(Rn)p are constructed from the wavelet packets. Relation to some physical theories such as E-infinity theory and multifractal theory is also discussed.

Suggested Citation

  • Chen, Qing-Jiang & Qu, Xiao-Gang, 2009. "Characteristics of a class of vector-valued non-separable higher-dimensional wavelet packet bases," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1676-1683.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1676-1683
    DOI: 10.1016/j.chaos.2008.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908003135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 39-42.
    2. Iovane, G., 2006. "Cantorian spacetime and Hilbert space: Part I—Foundations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 857-878.
    3. Li, Yueling & Dai, Chaoshou, 2006. "A multifractal formalism in a probability space," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 57-73.
    4. Naschie, M.S. El, 2006. "Fractal black holes and information," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 23-35.
    5. El Naschie, M.S., 2006. "Hilbert space, the number of Higgs particles and the quantum two-slit experiment," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 9-13.
    6. Chen, Qingjiang & Cheng, Zhengxing, 2007. "A study on compactly supported orthogonal vector-valued wavelets and wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 1024-1034.
    7. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    8. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Construction and characterizations of orthogonal vector-valued multivariate wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1835-1844.
    9. Iovane, G., 2005. "Mohamed El Naschie’s ϵ(∞) Cantorian space–time and its consequences in cosmology," Chaos, Solitons & Fractals, Elsevier, vol. 25(4), pages 775-779.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiao-Feng & Gao, Hongwei & Jinshun, Feng, 2009. "The characterization of vector-valued multivariate wavelet packets associated with a dilation matrix," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 1959-1966.
    2. Iovane, Gerardo, 2009. "The set of prime numbers: Multiscale analysis and numeric accelerators," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1953-1965.
    3. Iovane, Gerardo & Giordano, Paola, 2007. "Wavelets and multiresolution analysis: Nature of ε(∞) Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 896-910.
    4. Iovane, Gerardo, 2008. "The distribution of prime numbers: The solution comes from dynamical processes and genetic algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 23-42.
    5. Sun, Lei & Cheng, Zhengxing, 2007. "Construction of a class of compactly supported orthogonal vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 253-261.
    6. Chen, Qingjiang & Cao, Huaixin & Shi, Zhi, 2009. "Construction and characterizations of orthogonal vector-valued multivariate wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1835-1844.
    7. Wu, Guochang & Li, Zhiqiang & Cheng, Zhengxing, 2009. "Construction of wavelets with composite dilations," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2447-2456.
    8. Wu, Guochang & Cheng, Zhengxing & Li, Dengfeng & Zhang, Fangjuan, 2008. "Parseval frame wavelets associated with A-FMRA," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1233-1243.
    9. Iovane, Gerardo, 2008. "The set of prime numbers: Symmetries and supersymmetries of selection rules and asymptotic behaviours," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 950-961.
    10. Sun, Lei & Cheng, Zhengxing & Huang, Yongdong, 2007. "Construction of trivariate biorthogonal compactly supported wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1412-1420.
    11. Sun, Lei & Zhang, Xiaozhong, 2009. "A note on biorthogonality of the scaling functions with arbitrary matrix dilation factor," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 711-715.
    12. EL-Nabulsi, Ahmad Rami, 2009. "Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 52-61.
    13. Yuan, De-you & Du, Shu-de & Cheng, Zheng-xing, 2009. "Design and properties of vector-valued wavelets associated with an orthogonal vector-valued scaling function," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1368-1376.
    14. Chen, Qingjiang & Huo, Ailian, 2009. "The research of a class of biorthogonal compactly supported vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 951-961.
    15. Sun, Lei & Li, Gang, 2009. "Generalized orthogonal multiwavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2420-2424.
    16. Han, Jincang & Cheng, Zhengxing & Chen, Qingjiang, 2009. "A study of biorthogonal multiple vector-valued wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1574-1587.
    17. Chen, Qingjiang & Shi, Zhi, 2008. "Construction and properties of orthogonal matrix-valued wavelets and wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 75-86.
    18. Han, Jincang & Cheng, Zhengxing, 2009. "On the splitting trick and wavelets packets with arbitrary dilation matrix of L2(Rs)," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 130-137.
    19. Li, Rui & Wu, Guochang, 2009. "The orthogonal interpolating balanced multiwavelet with rational coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 892-899.
    20. El-Nabulsi, Rami Ahmad, 2009. "Fractional Dirac operators and deformed field theory on Clifford algebra," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2614-2622.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:4:p:1676-1683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.