IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i2p297-330.html
   My bibliography  Save this article

Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics

Author

Listed:
  • El Naschie, M.S.

Abstract

The role of elementary number theory in high energy physics is discussed in some details.

Suggested Citation

  • El Naschie, M.S., 2006. "Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 297-330.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:2:p:297-330
    DOI: 10.1016/j.chaos.2005.04.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905004753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.04.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2005. "On 336 kissing spheres in 10 dimensions, 528 P-Brane states in 11 dimensions and the 60 elementary particles of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 447-457.
    2. El Naschie, M.S., 2005. "Tadpoles, anomaly cancellation and the expectation value of the number of the Higgs particles in the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 659-663.
    3. El Naschie, M.S., 2005. "Gödel universe, dualities and high energy particles in E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 759-764.
    4. El Naschie, M.S., 2005. "The two-slit experiment as the foundation of E-infinity of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 509-514.
    5. El Naschie, M.S., 2005. "On Penrose view of transfinite sets and computability and the fractal character of E-infinity spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 531-533.
    6. El Naschie, M.S., 2005. "Einstein’s dream and fractal geometry," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 1-5.
    7. Naschie, M.S.El, 2005. "Deriving the essential features of the standard model from the general theory of relativity," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 941-946.
    8. El Naschie, M.S., 2005. "Experimental and theoretical arguments for the number and the mass of the Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1091-1098.
    9. El Naschie, M.S., 2005. "A few hints and some theorems about Witten’s M theory and T-duality," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 545-548.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    2. He, Ji-Huan & Xu, Lan, 2009. "Number of elementary particles using exceptional Lie symmetry groups hierarchy," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2119-2124.
    3. Marek-Crnjac, L., 2006. "Different Higgs models and the number of Higgs particles," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 575-579.
    4. Yin, Xin-An & Yang, Xiao-Hua & Yang, Zhi-Feng, 2009. "Using the R/S method to determine the periodicity of time series," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 731-745.
    5. El Naschie, M.S., 2005. "From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 969-977.
    6. El Naschie, M.S., 2007. "The Fibonacci code behind super strings and P-Branes. An answer to M. Kaku’s fundamental question," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 537-547.
    7. El Naschie, M.S., 2005. "Spinorial content of the standard model, a different look at super-symmetry and fuzzy E-infinity hyper Kähler," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 303-311.
    8. El Naschie, M.S., 2005. "Determining the mass of the Higgs and the electroweak bosons," Chaos, Solitons & Fractals, Elsevier, vol. 24(3), pages 899-905.
    9. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    10. Falcón, Sergio & Plaza, Ángel, 2008. "On the 3-dimensional k-Fibonacci spirals," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 993-1003.
    11. Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
    12. El Naschie, M.S., 2005. "An elementary model based method for determining the number of possible Higg bosons in the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 701-706.
    13. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.
    14. Marek-Crnjac, L., 2007. "The fundamental coupling constants of physics in connection with the dimension of the special orthogonal and unitary groups," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1382-1386.
    15. He, Ji-Huan, 2007. "The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 346-351.
    16. Caccese, E. & Guarracino, F., 2006. "On the “relativistic” description of motion of soliton-like defects in elastic media," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 868-880.
    17. ElOkaby, Ayman A., 2007. "A short review of the Higgs boson mass and E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 14-25.
    18. El Naschie, M.S., 2005. "A guide to the mathematics of E-infinity Cantorian spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 955-964.
    19. Qiu, Hua & Su, Weiyi, 2007. "3-Adic Cantor function on local fields and its p-adic derivative," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1625-1634.
    20. Hatir, E. & Noiri, T., 2009. "On δ–β-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 205-211.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:2:p:297-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.