IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009597.html
   My bibliography  Save this article

Patterns of rogue waves in the sharp-line Maxwell–Bloch system

Author

Listed:
  • Duan, Zhengyan
  • Tao, Xiuyu
  • Yang, Bo

Abstract

The Maxwell–Bloch system describes light-matter interactions in a semi-infinitely long one dimensional two-level optical medium. Rogue wave patterns in the Maxwell–Bloch system under sharp-line limit are analytically studied. It is shown that when single internal parameter in bilinear expressions of rogue waves gets large, these waves would exhibit clear geometric patterns, which comprise fundamental (Peregrine) rogue waves arranged in shapes such as triangle, pentagon, heptagon and nonagon structures, with a possible lower-order rogue wave at the center. These rogue wave patterns are analytically determined from the root structure of the Yablonskii–Vorob’ev polynomial hierarchy through dilation, rotation, stretch and shear. It is also shown that when multiple internal parameters in the rogue wave solutions get large, new rogue wave patterns would arise, including heart-shaped structures, fan-shaped structures, and many others. Analytically, these patterns are determined by the root structure of the Adler–Moser polynomials through a linear transformation. Comparison between analytical predictions of these rogue patterns and true solutions shows excellent agreement.

Suggested Citation

  • Duan, Zhengyan & Tao, Xiuyu & Yang, Bo, 2024. "Patterns of rogue waves in the sharp-line Maxwell–Bloch system," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009597
    DOI: 10.1016/j.chaos.2024.115407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenya Yan, 2009. "Financial rogue waves," Papers 0911.4259, arXiv.org, revised Sep 2010.
    2. Li, Wentao & Li, Biao, 2024. "Construction of degenerate lump solutions for (2+1)-dimensional Yu-Toda-Sasa-Fukuyama equation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Shen, Yuan & Tian, Bo & Zhou, Tian-Yu & Cheng, Chong-Dong, 2023. "Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. D. R. Solli & C. Ropers & P. Koonath & B. Jalali, 2007. "Optical rogue waves," Nature, Nature, vol. 450(7172), pages 1054-1057, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yindi & Zhao, Zhonglong, 2024. "Periodic line wave, rogue waves and the interaction solutions of the (2+1)-dimensional integrable Kadomtsev–Petviashvili-based system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Bo Ren & Ji Lin & Zhi-Mei Lou, 2019. "A New Nonlinear Equation with Lump-Soliton, Lump-Periodic, and Lump-Periodic-Soliton Solutions," Complexity, Hindawi, vol. 2019, pages 1-10, June.
    3. Zhang, Xi & Wang, Yu-Feng & Yang, Sheng-Xiong, 2024. "Hybrid structures of the rogue waves and breather-like waves for the higher-order coupled nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    4. Yuan, Cuilian & Yang, Hujiang & Meng, Xiankui & Tian, Ye & Zhou, Qin & Liu, Wenjun, 2023. "Modulational instability and discrete rogue waves with adjustable positions for a two-component higher-order Ablowitz–Ladik system associated with 4 × 4 Lax pair," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    6. Hussain, Arif & Ayub, Sadia & Salahuddin, T. & Khan, Mair & Altanji, Mohamed, 2024. "Numerical study of binary mixture and thermophoretic analysis near a solar radiative heat transfer," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    7. Zhang, Yu & Li, Chuanzhong & He, Jingsong, 2016. "Rogue waves in a resonant erbium-doped fiber system with higher-order effects," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 826-841.
    8. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    9. Xi-zhong Liu & Zhi-Mei Lou & Xian-Min Qian & Lamine Thiam, 2019. "A Study on Lump and Interaction Solutions to a (3 + 1)-Dimensional Soliton Equation," Complexity, Hindawi, vol. 2019, pages 1-12, October.
    10. Natanael Karjanto, 2024. "Modeling Wave Packet Dynamics and Exploring Applications: A Comprehensive Guide to the Nonlinear Schrödinger Equation," Mathematics, MDPI, vol. 12(5), pages 1-32, March.
    11. Alexandra Völkel & Luca Nimmesgern & Adam Mielnik-Pyszczorski & Timo Wirth & Georg Herink, 2022. "Intracavity Raman scattering couples soliton molecules with terahertz phonons," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    12. Zhang, Yi & Sun, YanBo & Xiang, Wen, 2015. "The rogue waves of the KP equation with self-consistent sources," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 204-213.
    13. Jiang, Yan & Qu, Qi-Xing, 2021. "Solitons and breathers for a generalized nonlinear Schrödinger equation via the binary Bell polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 57-68.
    14. Wang, Haotian & Li, Xin & Zhou, Qin & Liu, Wenjun, 2023. "Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    15. Duan, Xiaoyang & Zhao, Peixin & Li, Zhuyue & Han, Xue, 2024. "Quantifying the reciprocal impacts of capital and logistics networks in the supply chains: A cyber–physical system approach," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    16. Badshah, Fazal & Tariq, Kalim U. & Bekir, Ahmet & Tufail, R. Nadir & Ilyas, Hamza, 2024. "Lump, periodic, travelling, semi-analytical solutions and stability analysis for the Ito integro-differential equation arising in shallow water waves," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    17. Hederi, M. & Islas, A.L. & Reger, K. & Schober, C.M., 2016. "Efficiency of exponential time differencing schemes for nonlinear Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 127(C), pages 101-113.
    18. Chen, Yi-Xiang, 2023. "Vector peregrine composites on the periodic background in spin–orbit coupled Spin-1 Bose–Einstein condensates," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    19. Zhonglong Zhao & Lingchao He & Yubin Gao, 2019. "Rogue Wave and Multiple Lump Solutions of the (2+1)-Dimensional Benjamin-Ono Equation in Fluid Mechanics," Complexity, Hindawi, vol. 2019, pages 1-18, August.
    20. Lou, Yu & Zhang, Yi, 2022. "Breathers on elliptic function background for a generalized nonlinear Schrödinger equation with higher-order terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 22-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.