IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4072754.html
   My bibliography  Save this article

A New Nonlinear Equation with Lump-Soliton, Lump-Periodic, and Lump-Periodic-Soliton Solutions

Author

Listed:
  • Bo Ren
  • Ji Lin
  • Zhi-Mei Lou

Abstract

An extended (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff-like equation is proposed by using the generalized bilinear operators based on a prime number . By combining multiexponential functions with a quadratic function, the interaction between lumps and multikink soliton is generated. In the meanwhile, the interaction of lump with periodic waves and the interaction among lumps, periodic waves, and multikink soliton can be obtained by introducing the ansätz forms. The dynamics of these interaction solutions are analyzed graphically by selecting appropriate parameters.

Suggested Citation

  • Bo Ren & Ji Lin & Zhi-Mei Lou, 2019. "A New Nonlinear Equation with Lump-Soliton, Lump-Periodic, and Lump-Periodic-Soliton Solutions," Complexity, Hindawi, vol. 2019, pages 1-10, June.
  • Handle: RePEc:hin:complx:4072754
    DOI: 10.1155/2019/4072754
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/4072754.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/4072754.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/4072754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenya Yan, 2009. "Financial rogue waves," Papers 0911.4259, arXiv.org, revised Sep 2010.
    2. Yu, Jianping & Jing, Jian & Sun, Yongli & Wu, Suping, 2016. "(n+1)-Dimensional reduced differential transform method for solving partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 697-705.
    3. D. R. Solli & C. Ropers & P. Koonath & B. Jalali, 2007. "Optical rogue waves," Nature, Nature, vol. 450(7172), pages 1054-1057, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue-jun Deng & Rui-yu Jia & Ji Lin, 2019. "Lump and Mixed Rogue-Soliton Solutions of the (2 + 1)-Dimensional Mel’nikov System," Complexity, Hindawi, vol. 2019, pages 1-9, November.
    2. Rizvi, Syed T.R. & Seadawy, Aly R. & Ahmed, Sarfaraz & Younis, Muhammad & Ali, Kashif, 2021. "Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Cuilian & Yang, Hujiang & Meng, Xiankui & Tian, Ye & Zhou, Qin & Liu, Wenjun, 2023. "Modulational instability and discrete rogue waves with adjustable positions for a two-component higher-order Ablowitz–Ladik system associated with 4 × 4 Lax pair," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Liu, Yindi & Zhao, Zhonglong, 2024. "Periodic line wave, rogue waves and the interaction solutions of the (2+1)-dimensional integrable Kadomtsev–Petviashvili-based system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    4. Zhang, Yu & Li, Chuanzhong & He, Jingsong, 2016. "Rogue waves in a resonant erbium-doped fiber system with higher-order effects," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 826-841.
    5. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Xi-zhong Liu & Zhi-Mei Lou & Xian-Min Qian & Lamine Thiam, 2019. "A Study on Lump and Interaction Solutions to a (3 + 1)-Dimensional Soliton Equation," Complexity, Hindawi, vol. 2019, pages 1-12, October.
    7. Liu, Ling & Wen, Xiao-Yong & Liu, Nan & Jiang, Tao & Yuan, Jin-Yun, 2020. "An integrable lattice hierarchy associated with a 4 × 4 matrix spectral problem: N-fold Darboux transformation and dynamical properties," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    8. Natanael Karjanto, 2024. "Modeling Wave Packet Dynamics and Exploring Applications: A Comprehensive Guide to the Nonlinear Schrödinger Equation," Mathematics, MDPI, vol. 12(5), pages 1-32, March.
    9. Li, Lingfei & Yan, Yongsheng & Xie, Yingying, 2022. "Rational solutions with non-zero offset parameters for an extended (3 + 1)-dimensional BKP-Boussinesq equation," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. Alexandra Völkel & Luca Nimmesgern & Adam Mielnik-Pyszczorski & Timo Wirth & Georg Herink, 2022. "Intracavity Raman scattering couples soliton molecules with terahertz phonons," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    11. Xu, Yun-Jie, 2023. "Vector ring-like combined Akhmediev breathers for partially nonlocal nonlinearity under external potentials," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    12. Chen, Yi-Xiang, 2024. "(3+1)-dimensional partially nonlocal ring-like bright-dark monster waves," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    13. Zhang, Yi & Sun, YanBo & Xiang, Wen, 2015. "The rogue waves of the KP equation with self-consistent sources," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 204-213.
    14. Wei, Peng-Fei & Long, Chun-Xiao & Zhu, Chen & Zhou, Yi-Ting & Yu, Hui-Zhen & Ren, Bo, 2022. "Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    15. Yue-jun Deng & Rui-yu Jia & Ji Lin, 2019. "Lump and Mixed Rogue-Soliton Solutions of the (2 + 1)-Dimensional Mel’nikov System," Complexity, Hindawi, vol. 2019, pages 1-9, November.
    16. Jiang, Yan & Qu, Qi-Xing, 2021. "Solitons and breathers for a generalized nonlinear Schrödinger equation via the binary Bell polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 57-68.
    17. Mawia Osman & Yonghui Xia & Omer Abdalrhman Omer & Ahmed Hamoud, 2022. "On the Fuzzy Solution of Linear-Nonlinear Partial Differential Equations," Mathematics, MDPI, vol. 10(13), pages 1-49, June.
    18. He, Chun-Hui & Liu, Chao, 2023. "Variational principle for singular waves," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    19. El-Tantawy, S.A. & Salas, Alvaro H. & Alyousef, Haifa A. & Alharthi, M.R., 2022. "Novel approximations to a nonplanar nonlinear Schrödinger equation and modeling nonplanar rogue waves/breathers in a complex plasma," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    20. Wang, Haotian & Li, Xin & Zhou, Qin & Liu, Wenjun, 2023. "Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4072754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.