IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924005149.html
   My bibliography  Save this article

Numerical study of binary mixture and thermophoretic analysis near a solar radiative heat transfer

Author

Listed:
  • Hussain, Arif
  • Ayub, Sadia
  • Salahuddin, T.
  • Khan, Mair
  • Altanji, Mohamed

Abstract

The main focus of the current article is to investigate the two-dimensional boundary layer flow of non-Newtonian fluid induced by a linear stretching surface in the streamwise direction. The flow features of non-Newtonian fluid (i.e. shear-thinning and thickening nature of the fluids) are explored with Carreau fluid model. In addition, thermophoresis, Brownian motion, thermal radiation (with Rosseland approximation), binary mixture and activation enthalpy are also incorporated in fluid model for better analysis of thermal and solutal properties. The mathematical modelling of under consider physical problem yields nonlinear partial differential system. The governing mathematical system is first simplified with scaling transformations for the high Reynolds number and then transformed into non-dimensional ordinary differential system by using the similarity variables. Since the governing mathematical system comprised on nonlinear boundary value problem, thus shooting method is utilized for the numerical solution of the fluid flow governing equations. The obtained results followed the qualitative manners of the previously reported data. The computed results for important physical quantities (i.e. velocity, temperature, and concentration) are presented through graphs and then interpreted physically. It is observed that the boundary layer thickness increased for shear thickening fluids (n>1) while it is reduced for shear thinning fluids (n<1). Also, the temperature of shear thinning fluid is higher than shear thickening fluid. In addition, heat generation and thermal radiations enhance the thermal boundary layer. Thermophoretic viscosity effect reduces the concentration profile significantly in the flow domain.

Suggested Citation

  • Hussain, Arif & Ayub, Sadia & Salahuddin, T. & Khan, Mair & Altanji, Mohamed, 2024. "Numerical study of binary mixture and thermophoretic analysis near a solar radiative heat transfer," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924005149
    DOI: 10.1016/j.chaos.2024.114962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924005149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yuan & Tian, Bo & Zhou, Tian-Yu & Cheng, Chong-Dong, 2023. "Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Hsiao, Kai-Long, 2017. "To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method," Energy, Elsevier, vol. 130(C), pages 486-499.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeeshan, A. & Bhatti, M.M. & Muhammad, Taseer & Zhang, Lijun, 2020. "Magnetized peristaltic particle–fluid propulsion with Hall and ion slip effects through a permeable channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Ahmed, Jawad & Khan, Masood & Ahmad, Latif, 2020. "Radiative heat flux effect in flow of Maxwell nanofluid over a spiraling disk with chemically reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. Badshah, Fazal & Tariq, Kalim U. & Bekir, Ahmet & Tufail, R. Nadir & Ilyas, Hamza, 2024. "Lump, periodic, travelling, semi-analytical solutions and stability analysis for the Ito integro-differential equation arising in shallow water waves," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Ahmed Zeeshan & Nouman Ijaz & Tehseen Abbas & Rahmat Ellahi, 2018. "The Sustainable Characteristic of Bio-Bi-Phase Flow of Peristaltic Transport of MHD Jeffrey Fluid in the Human Body," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    5. Li, Conghui & Li, Chuanzhong & Wang, Gang & Liu, Wei, 2024. "On the line-soliton solutions of a coupled modified Kadomtsev–Petviashvili system in two-layer shallow water," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Hayat, Tasawar & Kanwal, Mehreen & Qayyum, Sumaira & Alsaedi, Ahmed, 2020. "Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    7. Wang, S.-F., 2024. "Spatial optical soliton cluster solutions in strongly nonlocal nonlinear media," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Eid, Mohamed R. & Mahny, K.L. & Dar, Amanullah & Muhammad, Taseer, 2020. "Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Shafee, Ahmad & Muhammad, Taseer & Alsakran, Reem & Tlili, Iskander & Babazadeh, Houman & Khan, Umar, 2020. "Numerical examination for nanomaterial forced convection within a permeable cavity involving magnetic forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    10. Salahuddin, T. & Siddique, Nazim & Arshad, Maryam, 2020. "Insight into the dynamics of the Non-Newtonian Casson fluid on a horizontal object with variable thickness," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 211-231.
    11. Fahd Almutairi & S.M. Khaled & Abdelhalim Ebaid, 2019. "MHD Flow of Nanofluid with Homogeneous-Heterogeneous Reactions in a Porous Medium under the Influence of Second-Order Velocity Slip," Mathematics, MDPI, vol. 7(3), pages 1-11, February.
    12. Saif, Rai Sajjad & Muhammad, Taseer & Sadia, Haleema & Ellahi, Rahmat, 2020. "Hydromagnetic flow of Jeffrey nanofluid due to a curved stretching surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    13. Hayat, Tasawar & Masood, Faria & Qayyum, Sumaira & Alsaedi, Ahmed, 2020. "Sutterby fluid flow subject to homogeneous–heterogeneous reactions and nonlinear radiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    14. Naqvi, Syed Muhammad Raza Shah & Muhammad, Taseer & Saleem, Salman & Kim, Hyun Min, 2020. "Significance of non-uniform heat generation/absorption in hydromagnetic flow of nanofluid due to stretching/shrinking disk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    15. Ullah, Malik Zaka & Alshomrani, Ali Saleh & Alghamdi, Metib, 2020. "Significance of Arrhenius activation energy in Darcy–Forchheimer 3D rotating flow of nanofluid with radiative heat transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    16. Mir Asma & W.A.M. Othman & Taseer Muhammad, 2019. "Numerical Study for Darcy–Forchheimer Flow of Nanofluid due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy," Mathematics, MDPI, vol. 7(10), pages 1-16, October.
    17. Khan, Sami Ullah & Shehzad, Sabir Ali, 2020. "Electrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: Applications of thermal extrusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    18. Hayat, T. & Yaqoob, Rabiya & Qayyum, Sumaira & Alsaedi, A., 2020. "Entropy generation optimization in nanofluid flow by variable thicked sheet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    19. Wu, Xi-Hu & Gao, Yi-Tian & Yu, Xin, 2024. "On a Hirota equation in oceanic fluid mechanics: Double-pole breather-to-soliton transitions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    20. Muhammad, Taseer & Rafique, Kiran & Asma, Mir & Alghamdi, Metib, 2020. "Darcy–Forchheimer flow over an exponentially stretching curved surface with Cattaneo–Christov double diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924005149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.