IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924001140.html
   My bibliography  Save this article

Hybrid structures of the rogue waves and breather-like waves for the higher-order coupled nonlinear Schrödinger equations

Author

Listed:
  • Zhang, Xi
  • Wang, Yu-Feng
  • Yang, Sheng-Xiong

Abstract

Under investigation in this paper is the higher-order coupled nonlinear Schrödinger system, which describe the ultrashort optical pulses in nonlinear medium. Based on Lax pair, choosing nonzero seed solutions, Nth-order hybrid solutions for the higher-order coupled nonlinear Schrödinger equations are constructed via the generalized Darboux transformation. The profile and energy distribution of three kinds of hybrid structures of the rogue waves and breather-like waves were exhibited: (I) the first-order rogue waves and one breather-like waves; (II) the second-order rogue waves and two breather-like waves; (III) the third-order rogue waves and three breather-like waves. In addition, the influences of parameters for the properties of hybrid structures are discussed.

Suggested Citation

  • Zhang, Xi & Wang, Yu-Feng & Yang, Sheng-Xiong, 2024. "Hybrid structures of the rogue waves and breather-like waves for the higher-order coupled nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001140
    DOI: 10.1016/j.chaos.2024.114563
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Sheng-Xiong & Wang, Yu-Feng & Zhang, Xi, 2023. "Conservation laws, Darboux transformation and localized waves for the N-coupled nonautonomous Gross–Pitaevskii equations in the Bose–Einstein condensates," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Li, Bang-Qing & Ma, Yu-Lan, 2020. "Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    3. Shen, Yuan & Tian, Bo & Zhou, Tian-Yu & Cheng, Chong-Dong, 2023. "Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. D. R. Solli & C. Ropers & P. Koonath & B. Jalali, 2007. "Optical rogue waves," Nature, Nature, vol. 450(7172), pages 1054-1057, December.
    5. Dong-Il Yeom & Benjamin J. Eggleton, 2007. "Rogue waves surface in light," Nature, Nature, vol. 450(7172), pages 953-954, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Conghui & Li, Chuanzhong & Wang, Gang & Liu, Wei, 2024. "On the line-soliton solutions of a coupled modified Kadomtsev–Petviashvili system in two-layer shallow water," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    2. Wu, Xi-Hu & Gao, Yi-Tian & Yu, Xin, 2024. "On a Hirota equation in oceanic fluid mechanics: Double-pole breather-to-soliton transitions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    4. Suganya, S. & Srividya, B. & Prabhu, A., 2024. "Existence of localized modes in a frustrated ferromagnetic spin chain with added biquadratic interaction," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Hussain, Arif & Ayub, Sadia & Salahuddin, T. & Khan, Mair & Altanji, Mohamed, 2024. "Numerical study of binary mixture and thermophoretic analysis near a solar radiative heat transfer," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    6. Zhang, Yu & Li, Chuanzhong & He, Jingsong, 2016. "Rogue waves in a resonant erbium-doped fiber system with higher-order effects," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 826-841.
    7. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Ma, Yu-Lan & Li, Bang-Qing, 2024. "Higher-order hybrid rogue wave and breather interaction dynamics for the AB system in two-layer fluids," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 489-502.
    9. Miguel Onorato & Pierre Suret, 2016. "Twenty years of progresses in oceanic rogue waves: the role played by weakly nonlinear models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 541-548, November.
    10. Li, Wentao & Li, Biao, 2024. "Construction of degenerate lump solutions for (2+1)-dimensional Yu-Toda-Sasa-Fukuyama equation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    11. Wang, S.-F., 2024. "Spatial optical soliton cluster solutions in strongly nonlocal nonlinear media," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Xianguo Geng & Ruomeng Li, 2019. "On a Vector Modified Yajima–Oikawa Long-Wave–Short-Wave Equation," Mathematics, MDPI, vol. 7(10), pages 1-23, October.
    13. Xi-zhong Liu & Zhi-Mei Lou & Xian-Min Qian & Lamine Thiam, 2019. "A Study on Lump and Interaction Solutions to a (3 + 1)-Dimensional Soliton Equation," Complexity, Hindawi, vol. 2019, pages 1-12, October.
    14. Li, Lingfei & Yan, Yongsheng & Xie, Yingying, 2022. "Rational solutions with non-zero offset parameters for an extended (3 + 1)-dimensional BKP-Boussinesq equation," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Alexandra Völkel & Luca Nimmesgern & Adam Mielnik-Pyszczorski & Timo Wirth & Georg Herink, 2022. "Intracavity Raman scattering couples soliton molecules with terahertz phonons," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    16. Xu, Yun-Jie, 2023. "Vector ring-like combined Akhmediev breathers for partially nonlocal nonlinearity under external potentials," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    17. Chen, Yi-Xiang, 2024. "(3+1)-dimensional partially nonlocal ring-like bright-dark monster waves," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    18. Zhang, Yi & Sun, YanBo & Xiang, Wen, 2015. "The rogue waves of the KP equation with self-consistent sources," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 204-213.
    19. Wei, Peng-Fei & Long, Chun-Xiao & Zhu, Chen & Zhou, Yi-Ting & Yu, Hui-Zhen & Ren, Bo, 2022. "Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Yue-jun Deng & Rui-yu Jia & Ji Lin, 2019. "Lump and Mixed Rogue-Soliton Solutions of the (2 + 1)-Dimensional Mel’nikov System," Complexity, Hindawi, vol. 2019, pages 1-9, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.