IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v168y2023ics0960077923000814.html
   My bibliography  Save this article

Modulational instability and discrete rogue waves with adjustable positions for a two-component higher-order Ablowitz–Ladik system associated with 4 × 4 Lax pair

Author

Listed:
  • Yuan, Cuilian
  • Yang, Hujiang
  • Meng, Xiankui
  • Tian, Ye
  • Zhou, Qin
  • Liu, Wenjun

Abstract

An exactly solvable two-component higher-order Ablowitz–Ladik system is introduced and investigated. It can simulate the evolution of an optical field in a tightly linked waveguide array. The generalized (m,N−m)-fold Darboux transformation is used to construct two distinct types of discrete rogue waves (RWs) with adjustable positions, namely, classical and oscillating RWs, by applying two distinct Taylor expansions to solutions of the 4 × 4 Lax pair. The dynamics of strong and weak interactions of the resulting RWs are discussed analytically, and some are discussed numerically, which demonstrate luxuriant RW structures. It is shown that novel oscillating RWs with adjustable positions exhibit unique features in numbers and shapes compared to classical RWs. In particular, we find that the novel second-order RW can own three or six basic RWs, and the novel third-order RW can own six or twelve basic RWs, while first-order RWs always have only one basic RW. Except for first-order RWs, the maximum amount (Tmax) of potentially divided first-order RWs in regard to novel RWs is correlated with the maximum amount (Smax) of classical RWs, namely, Tmax=2Smax. Moreover, the numerical results show that small noises have a lesser influence on novel strong interaction RWs than weak interaction RWs, whose primary cause could be connected to major energy distributions. The findings presented in this work will contribute to a deeper comprehending of the discrete RW phenomenon in nonlinear optics and other relevant areas.

Suggested Citation

  • Yuan, Cuilian & Yang, Hujiang & Meng, Xiankui & Tian, Ye & Zhou, Qin & Liu, Wenjun, 2023. "Modulational instability and discrete rogue waves with adjustable positions for a two-component higher-order Ablowitz–Ladik system associated with 4 × 4 Lax pair," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000814
    DOI: 10.1016/j.chaos.2023.113180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923000814
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenya Yan, 2009. "Financial rogue waves," Papers 0911.4259, arXiv.org, revised Sep 2010.
    2. Zhai, Yunyun & Ji, Ting & Geng, Xianguo, 2021. "Coupled derivative nonlinear Schrödinger III equation: Darboux transformation and higher-order rogue waves in a two-mode nonlinear fiber," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    3. Shen, Yuan & Tian, Bo & Zhou, Tian-Yu & Gao, Xiao-Tian, 2022. "Nonlinear differential-difference hierarchy relevant to the Ablowitz-Ladik equation: Lax pair, conservation laws, N-fold Darboux transformation and explicit exact solutions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. D. R. Solli & C. Ropers & P. Koonath & B. Jalali, 2007. "Optical rogue waves," Nature, Nature, vol. 450(7172), pages 1054-1057, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oğul Esen & Cristina Sardón & Marcin Zajac, 2024. "A Discrete Hamilton–Jacobi Theory for Contact Hamiltonian Dynamics," Mathematics, MDPI, vol. 12(15), pages 1-24, July.
    2. Cui, Xiao-Qi & Wen, Xiao-Yong & Li, Zai-Dong, 2024. "Magnetization reversal phenomenon of higher-order lump and mixed interaction structures on periodic background in the (2+1)-dimensional Heisenberg ferromagnet spin equation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Sang, Xue & Dong, Huanhe & Fang, Yong & Liu, Mingshuo & Kong, Yuan, 2024. "Soliton, breather and rogue wave solutions of the nonlinear Schrödinger equation via Darboux transformation on a time–space scale," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Ren & Ji Lin & Zhi-Mei Lou, 2019. "A New Nonlinear Equation with Lump-Soliton, Lump-Periodic, and Lump-Periodic-Soliton Solutions," Complexity, Hindawi, vol. 2019, pages 1-10, June.
    2. Sang, Xue & Dong, Huanhe & Fang, Yong & Liu, Mingshuo & Kong, Yuan, 2024. "Soliton, breather and rogue wave solutions of the nonlinear Schrödinger equation via Darboux transformation on a time–space scale," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    3. Liu, Yindi & Zhao, Zhonglong, 2024. "Periodic line wave, rogue waves and the interaction solutions of the (2+1)-dimensional integrable Kadomtsev–Petviashvili-based system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    5. Zhang, Yu & Li, Chuanzhong & He, Jingsong, 2016. "Rogue waves in a resonant erbium-doped fiber system with higher-order effects," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 826-841.
    6. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. Xi-zhong Liu & Zhi-Mei Lou & Xian-Min Qian & Lamine Thiam, 2019. "A Study on Lump and Interaction Solutions to a (3 + 1)-Dimensional Soliton Equation," Complexity, Hindawi, vol. 2019, pages 1-12, October.
    8. Natanael Karjanto, 2024. "Modeling Wave Packet Dynamics and Exploring Applications: A Comprehensive Guide to the Nonlinear Schrödinger Equation," Mathematics, MDPI, vol. 12(5), pages 1-32, March.
    9. Alexandra Völkel & Luca Nimmesgern & Adam Mielnik-Pyszczorski & Timo Wirth & Georg Herink, 2022. "Intracavity Raman scattering couples soliton molecules with terahertz phonons," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. Zhang, Yi & Sun, YanBo & Xiang, Wen, 2015. "The rogue waves of the KP equation with self-consistent sources," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 204-213.
    11. Jiang, Yan & Qu, Qi-Xing, 2021. "Solitons and breathers for a generalized nonlinear Schrödinger equation via the binary Bell polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 57-68.
    12. Wang, Haotian & Li, Xin & Zhou, Qin & Liu, Wenjun, 2023. "Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    13. Hederi, M. & Islas, A.L. & Reger, K. & Schober, C.M., 2016. "Efficiency of exponential time differencing schemes for nonlinear Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 127(C), pages 101-113.
    14. Chen, Yi-Xiang, 2023. "Vector peregrine composites on the periodic background in spin–orbit coupled Spin-1 Bose–Einstein condensates," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    15. Zhonglong Zhao & Lingchao He & Yubin Gao, 2019. "Rogue Wave and Multiple Lump Solutions of the (2+1)-Dimensional Benjamin-Ono Equation in Fluid Mechanics," Complexity, Hindawi, vol. 2019, pages 1-18, August.
    16. Lou, Yu & Zhang, Yi, 2022. "Breathers on elliptic function background for a generalized nonlinear Schrödinger equation with higher-order terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 22-31.
    17. Xianguo Geng & Ruomeng Li, 2019. "On a Vector Modified Yajima–Oikawa Long-Wave–Short-Wave Equation," Mathematics, MDPI, vol. 7(10), pages 1-23, October.
    18. Mattheakis, M. & Pitsios, I.J. & Tsironis, G.P. & Tzortzakis, S., 2016. "Extreme events in complex linear and nonlinear photonic media," Chaos, Solitons & Fractals, Elsevier, vol. 84(C), pages 73-80.
    19. Chen, Liang-Yuan & Wu, Hong-Yu & Jiang, Li-Hong, 2024. "Partially nonlocal ring-like spatiotemporal superimposed second-order breathers under a harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    20. Zhong, WenYe & Qin, Pei & Zhong, Wei-Ping & Belić, Milivoj, 2022. "Two-dimensional rogue wave clusters in self-focusing Kerr-media," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.