IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924001231.html
   My bibliography  Save this article

Construction of degenerate lump solutions for (2+1)-dimensional Yu-Toda-Sasa-Fukuyama equation

Author

Listed:
  • Li, Wentao
  • Li, Biao

Abstract

By utilizing Hirota’s bilinear and a novel limit method, the degenerate lump solutions including anomalous scattering of lumps and weak interaction of multiple lumps can be derived from the N soliton solutions of the Yu-Toda-Sasa-Fukuyama (YTSF) equation. By improving the traditional limit method, anomalous scattering of two lumps can be obtained, and the asymptotic behavior of the anomalous scattering lumps is carefully discussed in detail. Furthermore, weak interactions of multiple lumps containing interesting patterns such as triangles and quadrilaterals are derived, and the dynamic behavior of two types of weak interactions is also investigated. In addition, the interaction between lump and anomalous scattering lumps is also explored. These rare degenerate lump solutions can enrich the understanding of lump properties.

Suggested Citation

  • Li, Wentao & Li, Biao, 2024. "Construction of degenerate lump solutions for (2+1)-dimensional Yu-Toda-Sasa-Fukuyama equation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001231
    DOI: 10.1016/j.chaos.2024.114572
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Junchao & Song, Jin & Zhou, Zijian & Yan, Zhenya, 2023. "Data-driven localized waves and parameter discovery in the massive Thirring model via extended physics-informed neural networks with interface zones," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. D. R. Solli & C. Ropers & P. Koonath & B. Jalali, 2007. "Optical rogue waves," Nature, Nature, vol. 450(7172), pages 1054-1057, December.
    3. Li, Jiaheng & Li, Biao, 2022. "Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yindi & Zhao, Zhonglong, 2024. "Periodic line wave, rogue waves and the interaction solutions of the (2+1)-dimensional integrable Kadomtsev–Petviashvili-based system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haotian & Li, Xin & Zhou, Qin & Liu, Wenjun, 2023. "Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Liu, Yindi & Zhao, Zhonglong, 2024. "Periodic line wave, rogue waves and the interaction solutions of the (2+1)-dimensional integrable Kadomtsev–Petviashvili-based system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    4. Chen, Junchao & Song, Jin & Zhou, Zijian & Yan, Zhenya, 2023. "Data-driven localized waves and parameter discovery in the massive Thirring model via extended physics-informed neural networks with interface zones," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    5. Zhang, Yu & Li, Chuanzhong & He, Jingsong, 2016. "Rogue waves in a resonant erbium-doped fiber system with higher-order effects," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 826-841.
    6. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. Yin, Yu-Hang & Lü, Xing, 2024. "Multi-parallelized PINNs for the inverse problem study of NLS typed equations in optical fiber communications: Discovery on diverse high-order terms and variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Miguel Onorato & Pierre Suret, 2016. "Twenty years of progresses in oceanic rogue waves: the role played by weakly nonlinear models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 541-548, November.
    9. Xianguo Geng & Ruomeng Li, 2019. "On a Vector Modified Yajima–Oikawa Long-Wave–Short-Wave Equation," Mathematics, MDPI, vol. 7(10), pages 1-23, October.
    10. Xi-zhong Liu & Zhi-Mei Lou & Xian-Min Qian & Lamine Thiam, 2019. "A Study on Lump and Interaction Solutions to a (3 + 1)-Dimensional Soliton Equation," Complexity, Hindawi, vol. 2019, pages 1-12, October.
    11. Li, Lingfei & Yan, Yongsheng & Xie, Yingying, 2022. "Rational solutions with non-zero offset parameters for an extended (3 + 1)-dimensional BKP-Boussinesq equation," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    12. Alexandra Völkel & Luca Nimmesgern & Adam Mielnik-Pyszczorski & Timo Wirth & Georg Herink, 2022. "Intracavity Raman scattering couples soliton molecules with terahertz phonons," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    13. Zhang, Xi & Wang, Yu-Feng & Yang, Sheng-Xiong, 2024. "Hybrid structures of the rogue waves and breather-like waves for the higher-order coupled nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Xu, Yun-Jie, 2023. "Vector ring-like combined Akhmediev breathers for partially nonlocal nonlinearity under external potentials," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Chen, Yi-Xiang, 2024. "(3+1)-dimensional partially nonlocal ring-like bright-dark monster waves," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    16. Zhang, Yi & Sun, YanBo & Xiang, Wen, 2015. "The rogue waves of the KP equation with self-consistent sources," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 204-213.
    17. Wei, Peng-Fei & Long, Chun-Xiao & Zhu, Chen & Zhou, Yi-Ting & Yu, Hui-Zhen & Ren, Bo, 2022. "Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    18. Yue-jun Deng & Rui-yu Jia & Ji Lin, 2019. "Lump and Mixed Rogue-Soliton Solutions of the (2 + 1)-Dimensional Mel’nikov System," Complexity, Hindawi, vol. 2019, pages 1-9, November.
    19. Jiang, Yan & Qu, Qi-Xing, 2021. "Solitons and breathers for a generalized nonlinear Schrödinger equation via the binary Bell polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 57-68.
    20. Mvogo, Alain & Mouassom, L. Fernand & Nyam, F. M. Enyegue A & Mbane, C. Bioule, 2020. "Exact solitary waves for the 2D Sasa-Satsuma equation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.