IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i5p744-d1349645.html
   My bibliography  Save this article

Modeling Wave Packet Dynamics and Exploring Applications: A Comprehensive Guide to the Nonlinear Schrödinger Equation

Author

Listed:
  • Natanael Karjanto

    (Department of Mathematics, University College, Natural Science Campus, Sungkyunkwan University, Suwon 16419, Republic of Korea)

Abstract

The nonlinear Schrödinger (NLS) equation stands as a cornerstone model for exploring the intricate behavior of weakly nonlinear, quasi-monochromatic wave packets in dispersive media. Its reach extends across diverse physical domains, from surface gravity waves to the captivating realm of Bose–Einstein condensates. This article delves into the dual facets of the NLS equation: its capacity for modeling wave packet dynamics and its remarkable breadth of applications. We illuminate the derivation of the NLS equation through both heuristic and multiple-scale approaches, underscoring how distinct interpretations of physical variables and governing equations give rise to varied wave packet dynamics and tailored values for dispersive and nonlinear coefficients. To showcase its versatility, we present an overview of the NLS equation’s compelling applications in four research frontiers: nonlinear optics, surface gravity waves, superconductivity, and Bose–Einstein condensates. This exploration reveals the NLS equation as a powerful tool for unifying and understanding a vast spectrum of physical phenomena.

Suggested Citation

  • Natanael Karjanto, 2024. "Modeling Wave Packet Dynamics and Exploring Applications: A Comprehensive Guide to the Nonlinear Schrödinger Equation," Mathematics, MDPI, vol. 12(5), pages 1-32, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:744-:d:1349645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/5/744/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/5/744/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenya Yan, 2009. "Financial rogue waves," Papers 0911.4259, arXiv.org, revised Sep 2010.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Ren & Ji Lin & Zhi-Mei Lou, 2019. "A New Nonlinear Equation with Lump-Soliton, Lump-Periodic, and Lump-Periodic-Soliton Solutions," Complexity, Hindawi, vol. 2019, pages 1-10, June.
    2. Hederi, M. & Islas, A.L. & Reger, K. & Schober, C.M., 2016. "Efficiency of exponential time differencing schemes for nonlinear Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 127(C), pages 101-113.
    3. Zhonglong Zhao & Lingchao He & Yubin Gao, 2019. "Rogue Wave and Multiple Lump Solutions of the (2+1)-Dimensional Benjamin-Ono Equation in Fluid Mechanics," Complexity, Hindawi, vol. 2019, pages 1-18, August.
    4. Mattheakis, M. & Pitsios, I.J. & Tsironis, G.P. & Tzortzakis, S., 2016. "Extreme events in complex linear and nonlinear photonic media," Chaos, Solitons & Fractals, Elsevier, vol. 84(C), pages 73-80.
    5. Yuan, Cuilian & Yang, Hujiang & Meng, Xiankui & Tian, Ye & Zhou, Qin & Liu, Wenjun, 2023. "Modulational instability and discrete rogue waves with adjustable positions for a two-component higher-order Ablowitz–Ladik system associated with 4 × 4 Lax pair," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Liu, Yindi & Zhao, Zhonglong, 2024. "Periodic line wave, rogue waves and the interaction solutions of the (2+1)-dimensional integrable Kadomtsev–Petviashvili-based system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:744-:d:1349645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.