IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005847.html
   My bibliography  Save this article

On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation

Author

Listed:
  • Seadawy, Aly R.
  • Ali, Safdar
  • Rizvi, Syed T.R.

Abstract

To study the rogue waves in (n + 1)-dimensions, we assume the (n + 1)-dimensional NLSE in the occurrence of external potential. The modulation instability (MI) analysis is also performed as it is considered the fundamental mechanism for the development of wave solutions because it signifies the exponential growth of a weak perturbation. As far as concerned about the rogue waves, the 1st and 2nd order solutions are obtained by similarity transformation which are localized in both spatial and temporal directions in the presence of external potential. Dynamical study shows the different wave behavior by selecting the appropriate values of parameters of external magnetic field.

Suggested Citation

  • Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005847
    DOI: 10.1016/j.chaos.2022.112374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Tiecheng & Chen, Xiaohong & Chen, Dengyuan, 2005. "Darboux transformation and soliton-like solutions of nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 889-896.
    2. Seadawy, Aly R. & Iqbal, Mujahid & Lu, Dianchen, 2020. "Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    3. Seadawy, Aly R. & Ahmed, Sarfaraz & Rizvi, Syed T.R. & Ali, Kashif, 2022. "Lumps, breathers, interactions and rogue wave solutions for a stochastic gene evolution in double chain deoxyribonucleic acid system," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Younis, Muhammad & Rizvi, Syed Tahir Raza & Ali, Safdar, 2015. "Analytical and soliton solutions: Nonlinear model of nanobioelectronics transmission lines," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 994-1002.
    5. Seadawy, Aly R. & Rizvi, Syed T.R. & Ahmed, Sarfaraz, 2022. "Weierstrass and Jacobi elliptic, bell and kink type, lumps, Ma and Kuznetsov breathers with rogue wave solutions to the dissipative nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Seadawy, Aly R. & Arshad, Muhammad & Lu, Dianchen, 2020. "The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. D. R. Solli & C. Ropers & P. Koonath & B. Jalali, 2007. "Optical rogue waves," Nature, Nature, vol. 450(7172), pages 1054-1057, December.
    8. Çelik, Nisa & Seadawy, Aly R. & Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dmitriy Kvitko & Vyacheslav Rybin & Oleg Bayazitov & Artur Karimov & Timur Karimov & Denis Butusov, 2024. "Chaotic Path-Planning Algorithm Based on Courbage–Nekorkin Artificial Neuron Model," Mathematics, MDPI, vol. 12(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seadawy, Aly R. & Ahmed, Sarfaraz & Rizvi, Syed T.R. & Ali, Kashif, 2022. "Lumps, breathers, interactions and rogue wave solutions for a stochastic gene evolution in double chain deoxyribonucleic acid system," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Aly R. Seadawy & Syed T. R. Rizvi & Hanadi Zahed, 2023. "Lump-Type Solutions, Lump Solutions, and Mixed Rogue Waves for Coupled Nonlinear Generalized Zakharov Equations," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    3. Iqbal, Muhammad S. & Seadawy, Aly R. & Baber, Muhammad Z. & Qasim, Muhammad, 2022. "Application of modified exponential rational function method to Jaulent–Miodek system leading to exact classical solutions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Li, Liu-Qing & Gao, Yi-Tian & Yu, Xin & Ding, Cui-Cui & Wang, Dong, 2022. "Bilinear form and nonlinear waves of a (1+1)-dimensional generalized Boussinesq equation for the gravity waves over water surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 494-508.
    5. Zhang, Yu & Li, Chuanzhong & He, Jingsong, 2016. "Rogue waves in a resonant erbium-doped fiber system with higher-order effects," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 826-841.
    6. Kengne, Emmanuel, 2024. "Comment on “Weierstrass and Jacobi elliptic, bell and kink type, lumps, Ma and Kuznetsov breathers with rogue wave solutions to the dissipative nonlinear Schrödinger equation”," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Qi, Jianming & Cui, Qinghua & Bai, Leiqiang & Sun, Yiqun, 2024. "Investigating exact solutions, sensitivity, and chaotic behavior of multi-fractional order stochastic Davey–Sewartson equations for hydrodynamics research applications," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    8. Xi-zhong Liu & Zhi-Mei Lou & Xian-Min Qian & Lamine Thiam, 2019. "A Study on Lump and Interaction Solutions to a (3 + 1)-Dimensional Soliton Equation," Complexity, Hindawi, vol. 2019, pages 1-12, October.
    9. Alexandra Völkel & Luca Nimmesgern & Adam Mielnik-Pyszczorski & Timo Wirth & Georg Herink, 2022. "Intracavity Raman scattering couples soliton molecules with terahertz phonons," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. Marwan Alquran & Imad Jaradat, 2023. "Identifying Combination of Dark–Bright Binary–Soliton and Binary–Periodic Waves for a New Two-Mode Model Derived from the (2 + 1)-Dimensional Nizhnik–Novikov–Veselov Equation," Mathematics, MDPI, vol. 11(4), pages 1-9, February.
    11. Farman, Muhammad & Sarwar, Rabia & Akgul, Ali, 2023. "Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    12. Zhang, Yi & Sun, YanBo & Xiang, Wen, 2015. "The rogue waves of the KP equation with self-consistent sources," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 204-213.
    13. Jiang, Yan & Qu, Qi-Xing, 2021. "Solitons and breathers for a generalized nonlinear Schrödinger equation via the binary Bell polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 57-68.
    14. Bo Ren & Ji Lin & Zhi-Mei Lou, 2019. "A New Nonlinear Equation with Lump-Soliton, Lump-Periodic, and Lump-Periodic-Soliton Solutions," Complexity, Hindawi, vol. 2019, pages 1-10, June.
    15. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    16. Li, Zhu & Zhang, Ning & Dong, Huanhe, 2009. "New integrable lattice hierarchies and associated properties," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1132-1143.
    17. Wang, Haotian & Li, Xin & Zhou, Qin & Liu, Wenjun, 2023. "Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Chen, Yi-Xiang, 2023. "Vector peregrine composites on the periodic background in spin–orbit coupled Spin-1 Bose–Einstein condensates," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    19. Lou, Yu & Zhang, Yi, 2022. "Breathers on elliptic function background for a generalized nonlinear Schrödinger equation with higher-order terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 22-31.
    20. Ali, Karmina K. & Yokus, Asıf & Seadawy, Aly R. & Yilmazer, Resat, 2022. "The ion sound and Langmuir waves dynamical system via computational modified generalized exponential rational function," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.