IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v226y2024icp474-499.html
   My bibliography  Save this article

Dynamic analysis of a fast slow modified Leslie–Gower predator–prey model with constant harvest and stochastic factor

Author

Listed:
  • Li, Zhenlei
  • Zhang, Yue

Abstract

In this paper, the dynamic properties of a fast slow modified Leslie–Gower predator–prey model with constant harvest are discussed. The results show that the system appears different Hopf bifurcations and limit cycles as parameters change, and the stability of the internal equilibriums changes accordingly. The system also appears Bogdanov–Takens bifurcation phenomenon. For the fast–slow system of this model, the second order approximate perturbation manifolds, and an approximate manifold passing the fold point are constructed. Then using the criterion of inflection point curve and blow-up method, the existence of canard cycles is analyzed. By comparing with the model with nonlinear harvest, the different effects of constant harvest on the model are highlighted. In addition, the effect of stochastic factors on the fast–slow system is considered.

Suggested Citation

  • Li, Zhenlei & Zhang, Yue, 2024. "Dynamic analysis of a fast slow modified Leslie–Gower predator–prey model with constant harvest and stochastic factor," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 474-499.
  • Handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:474-499
    DOI: 10.1016/j.matcom.2024.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424002842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yilong & Xiao, Dongmei, 2007. "Bifurcations of a predator–prey system of Holling and Leslie types," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 606-620.
    2. Mortuja, Md Golam & Chaube, Mithilesh Kumar & Kumar, Santosh, 2021. "Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Zhao, Dianli & Yuan, Sanling, 2016. "Dynamics of the stochastic Leslie–Gower predator–prey system with randomized intrinsic growth rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 419-428.
    4. Shang, Zuchong & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2021. "Bifurcation analysis in a predator–prey system with an increasing functional response and constant-yield prey harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 976-1002.
    5. Umrao, Anuj Kumar & Roy, Subarna & Tiwari, Pankaj Kumar & Srivastava, Prashant K., 2024. "Dynamical behaviors of autonomous and nonautonomous models of generalist predator–prey system with fear, mutual interference and nonlinear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    6. Yufeng Wang & Youhua Qian & Bingwen Lin, 2020. "Relaxation Oscillations and Dynamical Properties in Two Time-Delay Slow-Fast Modified Leslie-Gower Models," Complexity, Hindawi, vol. 2020, pages 1-11, September.
    7. Xin Ai & Xinyu Liu & Yuting Ding & Han Li, 2022. "Dynamic Analysis of a COVID-19 Vaccination Model with a Positive Feedback Mechanism and Time-Delay," Mathematics, MDPI, vol. 10(9), pages 1-24, May.
    8. Xu, Dongsheng & Liu, Ming & Xu, Xiaofeng, 2020. "Analysis of a stochastic predator–prey system with modified Leslie–Gower and Holling-type IV schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Zuchong & Qiao, Yuanhua, 2023. "Multiple bifurcations in a predator–prey system of modified Holling and Leslie type with double Allee effect and nonlinear harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 745-764.
    2. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2018. "Stationary distribution and extinction of a stochastic predator–prey model with additional food and nonlinear perturbation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 226-239.
    3. Arjun Hasibuan & Asep Kuswandi Supriatna & Endang Rusyaman & Md. Haider Ali Biswas, 2023. "Predator–Prey Model Considering Implicit Marine Reserved Area and Linear Function of Critical Biomass Level," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    4. Sarif, Nawaj & Kumar, Arjun & Anshu, & Sarwardi, Sahabuddin & Dubey, Balram, 2024. "Spatio-temporal dynamics in a delayed prey–predator model with nonlinear prey refuge and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    5. Guodong Liu & Xiaohong Wang & Xinzhu Meng & Shujing Gao, 2017. "Extinction and Persistence in Mean of a Novel Delay Impulsive Stochastic Infected Predator-Prey System with Jumps," Complexity, Hindawi, vol. 2017, pages 1-15, June.
    6. Chen, Xingzhi & Tian, Baodan & Xu, Xin & Zhang, Hailan & Li, Dong, 2023. "A stochastic predator–prey system with modified LG-Holling type II functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 449-485.
    7. Hu, Guang-Ping & Li, Wan-Tong & Yan, Xiang-Ping, 2009. "Hopf bifurcations in a predator–prey system with multiple delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1273-1285.
    8. Yin, Hongwei & Zhou, Jiaxing & Xiao, Xiaoyong & Wen, Xiaoqing, 2014. "Analysis of a diffusive Leslie–Gower predator–prey model with nonmonotonic functional response," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 51-61.
    9. Liu, Qun & Jiang, Daqing & He, Xiuli & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Stationary distribution of a stochastic predator–prey model with distributed delay and general functional response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 273-287.
    10. Chen, Mengxin & Wu, Ranchao, 2023. "Steady states and spatiotemporal evolution of a diffusive predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    11. Huangyu Guo & Jing Han & Guodong Zhang, 2023. "Hopf Bifurcation and Control for the Bioeconomic Predator–Prey Model with Square Root Functional Response and Nonlinear Prey Harvesting," Mathematics, MDPI, vol. 11(24), pages 1-18, December.
    12. Youhua Qian & Yuhui Peng & Yufeng Wang & Bingwen Lin, 2022. "Relaxation Oscillations and Dynamical Properties in a Time Delay Slow–Fast Predator–Prey Model with a Piecewise Smooth Functional Response," Mathematics, MDPI, vol. 10(9), pages 1-11, April.
    13. Zou, Xiaoling & Ma, Pengyu & Zhang, Liren & Lv, Jingliang, 2022. "Dynamic properties for a stochastic food chain model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Yadav, Reeta & Sen, Moitri, 2024. "Spatio-temporal complexity in a prey-predator system with Holling type-IV response and Leslie-type numerical response: Turing and steady-state bifurcations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 283-302.
    15. Haiyin Li & Xuhua Cheng, 2021. "Dynamics of Stage-Structured Predator–Prey Model with Beddington–DeAngelis Functional Response and Harvesting," Mathematics, MDPI, vol. 9(17), pages 1-15, September.
    16. Xu, Chaoqun, 2020. "Probabilistic mechanisms of the noise-induced oscillatory transitions in a Leslie type predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    17. Li, Xinxin & Yu, Hengguo & Dai, Chuanjun & Ma, Zengling & Wang, Qi & Zhao, Min, 2021. "Bifurcation analysis of a new aquatic ecological model with aggregation effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 75-96.
    18. Yuanfu Shao & Weili Kong, 2022. "A Predator–Prey Model with Beddington–DeAngelis Functional Response and Multiple Delays in Deterministic and Stochastic Environments," Mathematics, MDPI, vol. 10(18), pages 1-25, September.
    19. Wang, Shufan & Tang, Haopeng & Ma, Zhihui, 2021. "Hopf bifurcation of a multiple-delayed predator–prey system with habitat complexity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 1-23.
    20. Jiao, Xubin & Li, Xiaodi & Yang, Youping, 2022. "Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:226:y:2024:i:c:p:474-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.