IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924004041.html
   My bibliography  Save this article

A Fast Spatial-temporal Information Compression algorithm for online real-time forecasting of traffic flow with complex nonlinear patterns

Author

Listed:
  • Xu, Zhihao
  • Lv, Zhiqiang
  • Chu, Benjia
  • Li, Jianbo

Abstract

Traffic flow usually contains complex nonlinear patterns. Deep learning can model nonlinear fluctuations through iterative updates of trainable parameters. It generally requires a large computational cost and may not apply to online real-time traffic flow forecasting tasks. Compared with offline forecasting, online real-time forecasting can provide more real-time and accurate traffic information, which is important to help reduce traffic accidents and improve the real-time decision-making ability of traffic management authorities. Current research has not adequately addressed the issue of online real-time traffic flow forecasting. Therefore, it is crucial to discuss the balance between accuracy and computational cost. A Fast Spatial-temporal Information Compression (FSTIC) algorithm is proposed for online real-time traffic flow forecasting. Experimental results show that Time Step Screening and Tucker Decomposition can compress spatial-temporal information. Besides, the Tensor Kernel Ridge Regression in the FSTIC algorithm can model nonlinear small sample data with high accuracy and low computational cost. In comparison to baselines, FSTIC reduces MAE, RMSE, and computational cost by an average of 41.66 %, 35.40 %, and 96.63 %, respectively.

Suggested Citation

  • Xu, Zhihao & Lv, Zhiqiang & Chu, Benjia & Li, Jianbo, 2024. "A Fast Spatial-temporal Information Compression algorithm for online real-time forecasting of traffic flow with complex nonlinear patterns," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924004041
    DOI: 10.1016/j.chaos.2024.114852
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdulkadir Canatar & Blake Bordelon & Cengiz Pehlevan, 2021. "Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Ni, Xuelian & Xiong, Fei & Pan, Shirui & Chen, Hongshu & Wu, Jia & Wang, Liang, 2023. "How heterogeneous social influence acts on human decision-making in online social networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Kristian Soltesz & Fredrik Gustafsson & Toomas Timpka & Joakim Jaldén & Carl Jidling & Albin Heimerson & Thomas B. Schön & Armin Spreco & Joakim Ekberg & Örjan Dahlström & Fredrik Bagge Carlson & Anna, 2020. "The effect of interventions on COVID-19," Nature, Nature, vol. 588(7839), pages 26-28, December.
    4. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 591(7849), pages 13-13, March.
    5. Fang, Weiwei & Zhuo, Wenhao & Yan, Jingwen & Song, Youyi & Jiang, Dazhi & Zhou, Teng, 2022. "Attention meets long short-term memory: A deep learning network for traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    6. Jiang, Ping & Yang, Hufang & Li, Hongmin & Wang, Ying, 2021. "A developed hybrid forecasting system for energy consumption structure forecasting based on fuzzy time series and information granularity," Energy, Elsevier, vol. 219(C).
    7. Meead Saberi & Homayoun Hamedmoghadam & Mudabber Ashfaq & Seyed Amir Hosseini & Ziyuan Gu & Sajjad Shafiei & Divya J. Nair & Vinayak Dixit & Lauren Gardner & S. Travis Waller & Marta C. González, 2020. "A simple contagion process describes spreading of traffic jams in urban networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Pan, Chenjian & Ling, Chen & He, Hongjin & Qi, Liqun & Xu, Yanwei, 2024. "A low-rank and sparse enhanced Tucker decomposition approach for tensor completion," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    9. Rizvi, Syed T.R. & Seadawy, Aly R. & Ahmed, Sarfaraz & Younis, Muhammad & Ali, Kashif, 2021. "Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    10. Filippo Simini & Gianni Barlacchi & Massimilano Luca & Luca Pappalardo, 2021. "A Deep Gravity model for mobility flows generation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    11. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 589(7840), pages 52-58, January.
    12. Çelik, Nisa & Seadawy, Aly R. & Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Miltiadis Moralis-Pegios & George Giamougiannis & Apostolos Tsakyridis & David Lazovsky & Nikos Pleros, 2024. "Perfect linear optics using silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Guangwei Cong & Noritsugu Yamamoto & Takashi Inoue & Yuriko Maegami & Morifumi Ohno & Shota Kita & Shu Namiki & Koji Yamada, 2022. "On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Minjia Chen & Yizhi Wang & Chunhui Yao & Adrian Wonfor & Shuai Yang & Richard Penty & Qixiang Cheng, 2024. "I/O-efficient iterative matrix inversion with photonic integrated circuits," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Cansu Demirkiran & Lakshmi Nair & Darius Bunandar & Ajay Joshi, 2024. "A blueprint for precise and fault-tolerant analog neural networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Nguyen, Thu Ha & Nguyen, Van Chung & Bui, Dang Quang & Dao, Phuong Nam, 2024. "An efficient Min/Max Robust Model Predictive Control for nonlinear discrete-time systems with dynamic disturbance," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    15. Liuting Shan & Qizhen Chen & Rengjian Yu & Changsong Gao & Lujian Liu & Tailiang Guo & Huipeng Chen, 2023. "A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. G. Mourgias-Alexandris & M. Moralis-Pegios & A. Tsakyridis & S. Simos & G. Dabos & A. Totovic & N. Passalis & M. Kirtas & T. Rutirawut & F. Y. Gardes & A. Tefas & N. Pleros, 2022. "Noise-resilient and high-speed deep learning with coherent silicon photonics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Tian, Yang & Tian, Hui & Cui, Qimei & Zhu, Xuzhen, 2024. "Phase transition phenomena in social propagation with dynamic fashion tendency and individual contact," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    20. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924004041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.