IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v587y2022ics0378437121007585.html
   My bibliography  Save this article

Attention meets long short-term memory: A deep learning network for traffic flow forecasting

Author

Listed:
  • Fang, Weiwei
  • Zhuo, Wenhao
  • Yan, Jingwen
  • Song, Youyi
  • Jiang, Dazhi
  • Zhou, Teng

Abstract

Accurate forecasting of future traffic flow has a wide range of applications, which is a fundamental component of intelligent transportation systems. However, timely and accurate traffic forecasting remains an open challenge due to the high nonlinearity and volatility of traffic flow data. Canonical long short-term memory (LSTM) networks are easily drawn to focus on min-to-min fluctuations rather than the long term dependencies of the traffic flow evolution. To address this issue, we propose to introduce an attention mechanism to the long short-term memory network for short-term traffic flow forecasting. The attention mechanism helps the network model to assign different weights to different inputs, focus on critical and important information, and make accurate predictions. Extensive experiments on four benchmark data sets show that the LSTM network equipped with an attention mechanism has superior performance compared with commonly used and state-of-the-art models.

Suggested Citation

  • Fang, Weiwei & Zhuo, Wenhao & Yan, Jingwen & Song, Youyi & Jiang, Dazhi & Zhou, Teng, 2022. "Attention meets long short-term memory: A deep learning network for traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
  • Handle: RePEc:eee:phsmap:v:587:y:2022:i:c:s0378437121007585
    DOI: 10.1016/j.physa.2021.126485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121007585
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Weihong & Yu, Ding & Wu, Ziyu & Du, Xin & Zhou, Teng, 2019. "A hybrid ensemble learning framework for basketball outcomes prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    2. Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    3. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2015. "Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 27-47.
    4. Shiqiang Zheng & Shuangyi Zhang & Youyi Song & Zhizhe Lin & Dazhi Jiang & Teng Zhou & chuan lin, 2021. "A Noise-Immune Boosting Framework for Short-Term Traffic Flow Forecasting," Complexity, Hindawi, vol. 2021, pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Xiaoyong & Chen, Fenghao & Wang, Yuchen & Lin, Xuefen & Ma, Weifeng, 2023. "Short-term traffic flow prediction model based on a shared weight gate recurrent unit neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    2. Ghaemi Asl, Mahdi & Ben Jabeur, Sami, 2024. "Could the Russia-Ukraine war stir up the persistent memory of interconnectivity among Islamic equity markets, energy commodities, and environmental factors?," Research in International Business and Finance, Elsevier, vol. 69(C).
    3. Luo, Jie & Wen, Chao & Peng, Qiyuan & Qin, Yong & Huang, Ping, 2023. "Forecasting the effect of traffic control strategies in railway systems: A hybrid machine learning method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    4. Xu, Zhihao & Lv, Zhiqiang & Chu, Benjia & Li, Jianbo, 2024. "A Fast Spatial-temporal Information Compression algorithm for online real-time forecasting of traffic flow with complex nonlinear patterns," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Lingru & Zhang, Zhanchang & Yang, Junjie & Yu, Yidan & Zhou, Teng & Qin, Jing, 2019. "A noise-immune Kalman filter for short-term traffic flow forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    2. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    3. Ma, Changxi & Zhang, Bowen & Li, Shukai & Lu, Youpeng, 2024. "Urban rail transit passenger flow prediction with ResCNN-GRU based on self-attention mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    4. Fei Wang & Yinxi Liang & Zhizhe Lin & Jinglin Zhou & Teng Zhou, 2024. "SSA-ELM: A Hybrid Learning Model for Short-Term Traffic Flow Forecasting," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    5. Shihao Zhao & Shuli Xing & Guojun Mao, 2022. "An Attention and Wavelet Based Spatial-Temporal Graph Neural Network for Traffic Flow and Speed Prediction," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    6. Chen, Xinqiang & Chen, Huixing & Yang, Yongsheng & Wu, Huafeng & Zhang, Wenhui & Zhao, Jiansen & Xiong, Yong, 2021. "Traffic flow prediction by an ensemble framework with data denoising and deep learning model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    7. Liu, Yang & Song, Yaolun & Zhang, Yan & Liao, Zhifang, 2022. "WT-2DCNN: A convolutional neural network traffic flow prediction model based on wavelet reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2016. "Time Series Based Hourly Traffic Flow Prediction on the GTA Freeways Using TSTVEC Model," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319287, Transportation Research Forum.
    9. Tian, Jing & Song, Xianmin & Tao, Pengfei & Liang, Jiahui, 2022. "Pattern-adaptive generative adversarial network with sparse data for traffic state estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    10. Ze Dong & Yipeng Zhou & Xiongguan Bao, 2024. "A Short-Term Vessel Traffic Flow Prediction Based on a DBO-LSTM Model," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    11. Chen, Yi-Ting & Sun, Edward W. & Chang, Ming-Feng & Lin, Yi-Bing, 2021. "Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0," International Journal of Production Economics, Elsevier, vol. 238(C).
    12. Song, Kai & Gao, Yiran & Shi, Jian, 2020. "Making real-time predictions for NBA basketball games by combining the historical data and bookmaker’s betting line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    13. Peng, Yeping & Khaled, Usama & Al-Rashed, Abdullah A.A.A. & Meer, Rashid & Goodarzi, Marjan & Sarafraz, M.M., 2020. "Potential application of Response Surface Methodology (RSM) for the prediction and optimization of thermal conductivity of aqueous CuO (II) nanofluid: A statistical approach and experimental validatio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    14. Sumit Sarkar & Sooraj Kamath, 2023. "Does luck play a role in the determination of the rank positions in football leagues? A study of Europe’s ‘big five’," Annals of Operations Research, Springer, vol. 325(1), pages 245-260, June.
    15. Zhanzhong Wang & Ruijuan Chu & Minghang Zhang & Xiaochao Wang & Siliang Luan, 2020. "An Improved Hybrid Highway Traffic Flow Prediction Model Based on Machine Learning," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    16. Chih-Yao Chang & Kuo-Ping Lin, 2020. "Developing Support Vector Machine with New Fuzzy Selection for the Infringement of a Patent Rights Problem," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    17. Wenguang Chai & Yuexin Zheng & Lin Tian & Jing Qin & Teng Zhou, 2023. "GA-KELM: Genetic-Algorithm-Improved Kernel Extreme Learning Machine for Traffic Flow Forecasting," Mathematics, MDPI, vol. 11(16), pages 1-15, August.
    18. Shumin Yang & Huaying Li & Zhizhe Lin & Youyi Song & Cheng Lin & Teng Zhou, 2022. "Quantitative Analysis of Anesthesia Recovery Time by Machine Learning Prediction Models," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
    19. Yulong Pei & Songmin Ran & Wanjiao Wang & Chuntong Dong, 2023. "Bus-Passenger-Flow Prediction Model Based on WPD, Attention Mechanism, and Bi-LSTM," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    20. Huang, Haichao & Chen, Jingya & Sun, Rui & Wang, Shuang, 2022. "Short-term traffic prediction based on time series decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:587:y:2022:i:c:s0378437121007585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.