IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30906-3.html
   My bibliography  Save this article

On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification

Author

Listed:
  • Guangwei Cong

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Noritsugu Yamamoto

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Takashi Inoue

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Yuriko Maegami

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Morifumi Ohno

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Shota Kita

    (NTT Basic Research labs.)

  • Shu Namiki

    (National Institute of Advanced Industrial Science and Technology (AIST))

  • Koji Yamada

    (National Institute of Advanced Industrial Science and Technology (AIST))

Abstract

On-chip training remains a challenging issue for photonic devices to implement machine learning algorithms. Most demonstrations only implement inference in photonics for offline-trained neural network models. On the other hand, artificial neural networks are one of the most deployed algorithms, while other machine learning algorithms such as supporting vector machine (SVM) remain unexplored in photonics. Here, inspired by SVM, we propose to implement projection-based classification principle by constructing nonlinear mapping functions in silicon photonic circuits and experimentally demonstrate on-chip bacterial foraging training for this principle to realize single Boolean logics, combinational Boolean logics, and Iris classification with ~96.7 − 98.3 per cent accuracy. This approach can offer comparable performances to artificial neural networks for various benchmarks even with smaller scales and without leveraging traditional activation functions, showing scalability advantage. Natural-intelligence-inspired bacterial foraging offers efficient and robust on-chip training, and this work paves a way for photonic circuits to perform nonlinear classification.

Suggested Citation

  • Guangwei Cong & Noritsugu Yamamoto & Takashi Inoue & Yuriko Maegami & Morifumi Ohno & Shota Kita & Shu Namiki & Koji Yamada, 2022. "On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30906-3
    DOI: 10.1038/s41467-022-30906-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30906-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30906-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 591(7849), pages 13-13, March.
    2. Zhoufeng Ying & Chenghao Feng & Zheng Zhao & Shounak Dhar & Hamed Dalir & Jiaqi Gu & Yue Cheng & Richard Soref & David Z. Pan & Ray T. Chen, 2020. "Electronic-photonic arithmetic logic unit for high-speed computing," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. H. Zhang & M. Gu & X. D. Jiang & J. Thompson & H. Cai & S. Paesani & R. Santagati & A. Laing & Y. Zhang & M. H. Yung & Y. Z. Shi & F. K. Muhammad & G. Q. Lo & X. S. Luo & B. Dong & D. L. Kwong & L. C., 2021. "An optical neural chip for implementing complex-valued neural network," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Xingyuan Xu & Mengxi Tan & Bill Corcoran & Jiayang Wu & Andreas Boes & Thach G. Nguyen & Sai T. Chu & Brent E. Little & Damien G. Hicks & Roberto Morandotti & Arnan Mitchell & David J. Moss, 2021. "11 TOPS photonic convolutional accelerator for optical neural networks," Nature, Nature, vol. 589(7840), pages 44-51, January.
    5. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 589(7840), pages 52-58, January.
    6. Kristof Vandoorne & Pauline Mechet & Thomas Van Vaerenbergh & Martin Fiers & Geert Morthier & David Verstraeten & Benjamin Schrauwen & Joni Dambre & Peter Bienstman, 2014. "Experimental demonstration of reservoir computing on a silicon photonics chip," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. G. Mourgias-Alexandris & M. Moralis-Pegios & A. Tsakyridis & S. Simos & G. Dabos & A. Totovic & N. Passalis & M. Kirtas & T. Rutirawut & F. Y. Gardes & A. Tefas & N. Pleros, 2022. "Noise-resilient and high-speed deep learning with coherent silicon photonics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Zhongjin Lin & Bhavin J. Shastri & Shangxuan Yu & Jingxiang Song & Yuntao Zhu & Arman Safarnejadian & Wangning Cai & Yanmei Lin & Wei Ke & Mustafa Hammood & Tianye Wang & Mengyue Xu & Zibo Zheng & Moh, 2024. "120 GOPS Photonic tensor core in thin-film lithium niobate for inference and in situ training," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Wenting Wang & Ping-Keng Lu & Abhinav Kumar Vinod & Deniz Turan & James F. McMillan & Hao Liu & Mingbin Yu & Dim-Lee Kwong & Mona Jarrahi & Chee Wei Wong, 2022. "Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Chenduan Chen & Zhan Yang & Tao Wang & Yalun Wang & Kai Gao & Jiajia Wu & Jun Wang & Jianrong Qiu & Dezhi Tan, 2024. "Ultra-broadband all-optical nonlinear activation function enabled by MoTe2/optical waveguide integrated devices," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Xuguang Zhang & Zixuan Zhou & Yijun Guo & Minxue Zhuang & Warren Jin & Bitao Shen & Yujun Chen & Jiahui Huang & Zihan Tao & Ming Jin & Ruixuan Chen & Zhangfeng Ge & Zhou Fang & Ning Zhang & Yadong Liu, 2024. "High-coherence parallelization in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Miltiadis Moralis-Pegios & George Giamougiannis & Apostolos Tsakyridis & David Lazovsky & Nikos Pleros, 2024. "Perfect linear optics using silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Minjia Chen & Yizhi Wang & Chunhui Yao & Adrian Wonfor & Shuai Yang & Richard Penty & Qixiang Cheng, 2024. "I/O-efficient iterative matrix inversion with photonic integrated circuits," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Cansu Demirkiran & Lakshmi Nair & Darius Bunandar & Ajay Joshi, 2024. "A blueprint for precise and fault-tolerant analog neural networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Liuting Shan & Qizhen Chen & Rengjian Yu & Changsong Gao & Lujian Liu & Tailiang Guo & Huipeng Chen, 2023. "A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Chen-Guang Wang & Wuyue Xu & Chong Li & Lili Shi & Junliang Jiang & Tingting Guo & Wen-Cheng Yue & Tianyu Li & Ping Zhang & Yang-Yang Lyu & Jiazheng Pan & Xiuhao Deng & Ying Dong & Xuecou Tu & Sining , 2024. "Integrated and DC-powered superconducting microcomb," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Yiwei Li & Ning An & Zheyi Lu & Yuchen Wang & Bing Chang & Teng Tan & Xuhan Guo & Xizhen Xu & Jun He & Handing Xia & Zhaohui Wu & Yikai Su & Yuan Liu & Yunjiang Rao & Giancarlo Soavi & Baicheng Yao, 2022. "Nonlinear co-generation of graphene plasmons for optoelectronic logic operations," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30906-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.