IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009895.html
   My bibliography  Save this article

Koopman theory meets graph convolutional network: Learning the complex dynamics of non-stationary highway traffic flow for spatiotemporal prediction

Author

Listed:
  • Wang, Ting
  • Ngoduy, Dong
  • Li, Ye
  • Lyu, Hao
  • Zou, Guojian
  • Dantsuji, Takao

Abstract

Reliable and accurate traffic flow prediction is crucial for the construction and operation of smart highways, supporting scientific traffic management and planning. However, accurately predicting spatiotemporal traffic flow in non-stationary and unprecedented traffic patterns scenarios, such as holidays and adverse weather conditions, remains a challenging task. Considering that (1) Koopman theory effectively captures the underlying time-variant dynamics of the non-stationary temporal sequence (2) Graph convolutional network (GCN) effectively extracts complex spatial dependencies, combining the strengths of both is a promising solution. Therefore, this paper proposes a spatiotemporal prediction network that integrates Koopman theory and GCN, named KoopGCN, for predicting non-stationary and inexperienced highway traffic flow. KoopGCN decomposes the input into time-invariant and time-variant components based on Fast Fourier Transform. The dual engine block consisting of KoopGCN InvarEngine and KoopGCN VarEngine is designed to predict two types of components separately. And the dual engine block also passes the residual to the next block for modeling. The experiment is conducted on real monitored highway data in Ningde City, Fujian Province, China. The results indicate that even if there is a significant distribution difference between the training and testing sets, KoopGCN can achieve accurate prediction, significantly outperforms state-of-the-art baselines.

Suggested Citation

  • Wang, Ting & Ngoduy, Dong & Li, Ye & Lyu, Hao & Zou, Guojian & Dantsuji, Takao, 2024. "Koopman theory meets graph convolutional network: Learning the complex dynamics of non-stationary highway traffic flow for spatiotemporal prediction," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009895
    DOI: 10.1016/j.chaos.2024.115437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    2. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2023. "Jamming transition in two-lane lattice model integrating the deception attacks on influx during the lane-changing process under vehicle to everything environment," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Xu, Zhihao & Lv, Zhiqiang & Chu, Benjia & Li, Jianbo, 2024. "A Fast Spatial-temporal Information Compression algorithm for online real-time forecasting of traffic flow with complex nonlinear patterns," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Hu, Junjie & Hu, Cheng & Yang, Jiayu & Bai, Jun & Lee, Jaeyoung Jay, 2024. "Do traffic flow states follow Markov properties? A high-order spatiotemporal traffic state reconstruction approach for traffic prediction and imputation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. A. M. Avila & I. Mezić, 2020. "Data-driven analysis and forecasting of highway traffic dynamics," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Peng, Guanghan & Xu, Mingzuo & Tan, Huili, 2024. "Congestion and phase transitions of heterogeneous continuum model with large trucks mixed with conventional vehicles and ACC vehicles," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    3. Soulaymane Kachani & Georgia Perakis, 2009. "A Dynamic Travel Time Model for Spillback," Networks and Spatial Economics, Springer, vol. 9(4), pages 595-618, December.
    4. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    5. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    6. Xingmin Wang & Zachary Jerome & Zihao Wang & Chenhao Zhang & Shengyin Shen & Vivek Vijaya Kumar & Fan Bai & Paul Krajewski & Danielle Deneau & Ahmad Jawad & Rachel Jones & Gary Piotrowicz & Henry X. L, 2024. "Traffic light optimization with low penetration rate vehicle trajectory data," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    8. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    9. Jin, W. L. & Zhang, H. M., 2003. "The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 37(3), pages 207-223, March.
    10. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    11. Saif Eddin Jabari & Laura Wynter, 2016. "Sensor placement with time-to-detection guarantees," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 415-433, December.
    12. García-Chan, N. & Alvarez-Vázquez, L.J. & Martínez, A. & Vázquez-Méndez, M.E., 2021. "Designing an ecologically optimized road corridor surrounding restricted urban areas: A mathematical methodology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 745-759.
    13. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    14. Coifman, Benjamin & Ponnu, Balaji, 2020. "Adjacent lane dependencies modulating wave velocity on congested freeways-An empirical study," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 84-99.
    15. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    16. Hou, Lin & Pei, Yulong & He, Qingling, 2023. "A car following model in the context of heterogeneous traffic flow involving multilane following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    17. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    18. Kim, T. & Zhang, H.M., 2008. "A stochastic wave propagation model," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 619-634, August.
    19. Zhang, Lele & Finn, Caley & Garoni, Timothy M. & de Gier, Jan, 2018. "Behaviour of traffic on a link with traffic light boundaries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 116-138.
    20. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.