IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v181y2024ics0960077924001413.html
   My bibliography  Save this article

Infectious disease spreading modeling and containing strategy in heterogeneous population

Author

Listed:
  • Li, Wenjie
  • Li, Jiachen
  • Nie, Yanyi
  • Lin, Tao
  • Chen, Yu
  • Liu, Xiaoyang
  • Su, Sheng
  • Wang, Wei

Abstract

Individual heterogeneity (i.e., age and underlying health condition) and contact pattern heterogeneity (i.e., circumstances and frequency of contact) are two crucial aspects of heterogeneous population, which have been demonstrated markedly affect the dynamical process and effectiveness of containing strategy of infectious disease. The former primarily influences susceptibility to the disease, while the latter predominantly controls the spreading process (e.g., “super-spreading” events often occur within households). In this study, we propose a contact data-driven infectious disease spreading model with age structure, underlying health conditions, and containing measures, as well as two types of heterogeneity-based containing strategies for heterogeneous populations. Based on this, a theoretical analysis framework is developed by extending mean-field theory. Using the next-generation matrix method, we estimate the basic reproduction number, finding it to be sensitive to individual heterogeneity, contact pattern heterogeneity, and containing measures. We perform extensive simulations for the spreading of Covid-19 and influenza in 31 cities and find that stronger household infection within contact pattern heterogeneity and the implementation of immunization both lead to a trade-off between the final cumulative infection density (daily infection density peak) and pandemic duration. Individual heterogeneity and contact pattern heterogeneity result in uneven distribution of infection density across different age groups and affect the immunization effects of different immunization strategies. When considering the impact of individual heterogeneity, immunizing only individuals without underlying diseases within each age group is insufficient to achieve optimal control; individuals with underlying diseases should be encouraged to get vaccinated as well. When considering the impact of contact pattern heterogeneity, the results from Anhui indicate that immunizing the 40–59 age group is most effective in the early stages of the epidemic, while overall, immunizing the 20–39 age group is most effective.

Suggested Citation

  • Li, Wenjie & Li, Jiachen & Nie, Yanyi & Lin, Tao & Chen, Yu & Liu, Xiaoyang & Su, Sheng & Wang, Wei, 2024. "Infectious disease spreading modeling and containing strategy in heterogeneous population," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001413
    DOI: 10.1016/j.chaos.2024.114590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924001413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Zhong-Wen & Xu, Yuan-Hao & Chen, Jie & Hu, Mao-Bin, 2023. "Investigation of traffic-driven epidemic spreading by taxi trip data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Xie, Meiling & Li, Yuhan & Feng, Minyu & Kurths, Jürgen, 2023. "Contact-dependent infection and mobility in the metapopulation SIR model from a birth–death process perspective," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Zhu, Yu-Xiao & Cao, Yan-Yan & Chen, Ting & Qiu, Xiao-Yan & Wang, Wei & Hou, Rui, 2018. "Crossover phenomena in growth pattern of social contagions with restricted contact," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 408-414.
    4. Sun, Qingyi & Wang, Zhishuang & Zhao, Dawei & Xia, Chengyi & Perc, Matjaž, 2022. "Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Basnarkov, Lasko & Tomovski, Igor & Sandev, Trifce & Kocarev, Ljupco, 2022. "Non-Markovian SIR epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Serrano, Daniel Hernández & Villarroel, Javier & Hernández-Serrano, Juan & Tocino, Ángel, 2023. "Stochastic simplicial contagion model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    7. Dina Mistry & Maria Litvinova & Ana Pastore y Piontti & Matteo Chinazzi & Laura Fumanelli & Marcelo F. C. Gomes & Syed A. Haque & Quan-Hui Liu & Kunpeng Mu & Xinyue Xiong & M. Elizabeth Halloran & Ira, 2021. "Inferring high-resolution human mixing patterns for disease modeling," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. González-Val, Rafael & Marcén, Miriam, 2022. "Mass gathering events and the spread of infectious diseases: Evidence from the early growth phase of COVID-19," Economics & Human Biology, Elsevier, vol. 46(C).
    10. Yun Qiu & Xi Chen & Wei Shi, 2020. "Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1127-1172, October.
    11. Li, Ai-Wen & Xu, Xiao-Ke & Fan, Ying, 2022. "Immunization strategies for false information spreading on signed social networks," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wenjie & Gu, Wenbin & Li, Jiachen & Xin, Yu & Liu, Hao & Su, Sheng & Wang, Wei, 2024. "Coevolution of non-pharmaceutical interventions and infectious disease spreading in age-structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mudassar Arsalan & Omar Mubin & Fady Alnajjar & Belal Alsinglawi, 2020. "COVID-19 Global Risk: Expectation vs. Reality," IJERPH, MDPI, vol. 17(15), pages 1-10, August.
    2. Nicholas W. Papageorge & Matthew V. Zahn & Michèle Belot & Eline Broek-Altenburg & Syngjoo Choi & Julian C. Jamison & Egon Tripodi, 2021. "Socio-demographic factors associated with self-protecting behavior during the Covid-19 pandemic," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(2), pages 691-738, April.
    3. Chen, Simiao & Jin, Zhangfeng & Bloom, David E., 2020. "Act Early to Prevent Infections and Save Lives: Causal Impact of Diagnostic Efficiency on the COVID-19 Pandemic," IZA Discussion Papers 13749, Institute of Labor Economics (IZA).
    4. Célia Landmann Szwarcwald & Deborah Carvalho Malta & Marilisa Berti de Azevedo Barros & Paulo Roberto Borges de Souza Júnior & Dália Romero & Wanessa da Silva de Almeida & Giseli Nogueira Damacena & A, 2021. "Associations of Sociodemographic Factors and Health Behaviors with the Emotional Well-Being of Adolescents during the COVID-19 Pandemic in Brazil," IJERPH, MDPI, vol. 18(11), pages 1-13, June.
    5. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    6. Cui Zhang & Dandan Zhang, 2023. "Spatial Interactions and the Spread of COVID-19: A Network Perspective," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 383-405, June.
    7. Abu Bakkar Siddique & Kingsley E. Haynes & Rajendra Kulkarni & Meng-Hao Li, 2023. "Regional poverty and infection disease: early exploratory evidence from the COVID-19 pandemic," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 70(1), pages 209-236, February.
    8. Maxim Ananyev & Michael Poyker & Yuan Tian, 2021. "The safest time to fly: pandemic response in the era of Fox News," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(3), pages 775-802, July.
    9. Badi H. Baltagi & Ying Deng & Jing Li & Zhenlin Yang, 2023. "Cities in a pandemic: Evidence from China," Journal of Regional Science, Wiley Blackwell, vol. 63(2), pages 379-408, March.
    10. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Indrikis A. Krams & Priit Jõers & Severi Luoto & Giedrius Trakimas & Vilnis Lietuvietis & Ronalds Krams & Irena Kaminska & Markus J. Rantala & Tatjana Krama, 2021. "The Obesity Paradox Predicts the Second Wave of COVID-19 to Be Severe in Western Countries," IJERPH, MDPI, vol. 18(3), pages 1-10, January.
    12. Eiji Yamamura & Yoshiro Tsustsui, 2021. "School closures and mental health during the COVID-19 pandemic in Japan," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1261-1298, October.
    13. Singh, Pratik Kumar & Mishra, Alok Kumar, 2024. "Deciphering the COVID-19 density puzzle: A meta-analysis approach," Social Science & Medicine, Elsevier, vol. 363(C).
    14. Klaus F. Zimmermann & Gokhan Karabulut & Mehmet Huseyin Bilgin & Asli Cansin Doker, 2020. "Inter‐country distancing, globalisation and the coronavirus pandemic," The World Economy, Wiley Blackwell, vol. 43(6), pages 1484-1498, June.
    15. Teresa Barbieri & Gaetano Basso & Sergio Scicchitano, 2022. "Italian Workers at Risk During the COVID-19 Epidemic," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 8(1), pages 175-195, March.
    16. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    17. Duc Anh Dang & Ngoc Anh Tran, 2022. "Does an effective government lower COVID-19's health impact?: Evidence from Viet Nam," WIDER Working Paper Series wp-2022-62, World Institute for Development Economic Research (UNU-WIDER).
    18. Lewandowski, Piotr, 2020. "Occupational Exposure to Contagion and the Spread of COVID-19 in Europe," IZA Discussion Papers 13227, Institute of Labor Economics (IZA).
    19. Keyang Li & Yu Qin & Jing Wu & Jubo Yan, 2023. "Perceived economic prospects during the early stage of COVID‐19 breakout," Contemporary Economic Policy, Western Economic Association International, vol. 41(4), pages 696-713, October.
    20. Qiu, Yun & Liu, Yunning & Shi, Wei & Zhou, Maigeng, 2024. "The impact of ozone pollution on mortality: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.