IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922009134.html
   My bibliography  Save this article

Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes

Author

Listed:
  • Sun, Qingyi
  • Wang, Zhishuang
  • Zhao, Dawei
  • Xia, Chengyi
  • Perc, Matjaž

Abstract

Recent studies have shown that personal resources have a significant impact on the dynamics of epidemic spreading. In previous studies, the main way for individuals to be able to obtain resources was through pairwise interactions. However, the human relationship network is often characterized also by group interactions, not just by pairwise interactions. To study the impact of resource diffusion on disease propagation in such higher-order networks, we therefore propose a multilayer network model, where the upper-layer network represents a resource network composed of random simplicial complexes to transmit resources, while the lower-layer network represents the network of physical contacts where the disease can spread. We derive the outbreak threshold expression for the epidemic by means of the micro Markov chain method, which reveals that the diffusion of resources may substantially change the epidemic threshold. We also show that the final fractions of infected individuals obtained via the micro Markov chain method and the classical Monte Carlo method are very similar, thus confirming that the model can predict well the epidemic spreading within the networked population. Finally, through extensive simulations, we show also that increasing the spread of resources on 2-simplexes can suppress the epidemic spreading and outbreaks, thus outlining possibilities for novel containment strategies.

Suggested Citation

  • Sun, Qingyi & Wang, Zhishuang & Zhao, Dawei & Xia, Chengyi & Perc, Matjaž, 2022. "Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922009134
    DOI: 10.1016/j.chaos.2022.112734
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaolong Chen & Ruijie Wang & Dan Yang & Jiajun Xian & Qing Li, 2020. "Effects of the Awareness-Driven Individual Resource Allocation on the Epidemic Dynamics," Complexity, Hindawi, vol. 2020, pages 1-12, October.
    2. Ping Huang & Xiao-Long Chen & Ming Tang & Shi-Min Cai & Ye Wu, 2021. "Coupled Dynamic Model of Resource Diffusion and Epidemic Spreading in Time-Varying Multiplex Networks," Complexity, Hindawi, vol. 2021, pages 1-11, March.
    3. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Unai Alvarez-Rodriguez & Federico Battiston & Guilherme Ferraz Arruda & Yamir Moreno & Matjaž Perc & Vito Latora, 2021. "Evolutionary dynamics of higher-order interactions in social networks," Nature Human Behaviour, Nature, vol. 5(5), pages 586-595, May.
    5. Zhang, Hai-Feng & Shu, Pan-Pan & Wang, Zhen & Tang, Ming & Small, Michael, 2017. "Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 332-342.
    6. Yin, Qian & Wang, Zhishuang & Xia, Chengyi & Dehmer, Matthias & Emmert-Streib, Frank & Jin, Zhen, 2020. "A novel epidemic model considering demographics and intercity commuting on complex dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    7. Brandeau, Margaret L. & Zaric, Gregory S. & Richter, Anke, 2003. "Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis," Journal of Health Economics, Elsevier, vol. 22(4), pages 575-598, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishnagopal, Sanjukta & Bianconi, Ginestra, 2023. "Topology and dynamics of higher-order multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Tan, Jipeng & Zhang, Man & Liu, Fengming, 2024. "Online-Offline Higher-Order Rumor Propagation Model Based on Quantum Cellular Automata Considering Social Adaptation," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    3. Peng, Hao & Zhao, Yifan & Zhao, Dandan & Zhong, Ming & Hu, Zhaolong & Han, Jianming & Li, Runchao & Wang, Wei, 2023. "Robustness of higher-order interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. Hou, Yunxiang & Lu, Yikang & Dong, Yuting & Jin, Libin & Shi, Lei, 2023. "Impact of different social attitudes on epidemic spreading in activity-driven networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    5. Li, Wenjie & Li, Jiachen & Nie, Yanyi & Lin, Tao & Chen, Yu & Liu, Xiaoyang & Su, Sheng & Wang, Wei, 2024. "Infectious disease spreading modeling and containing strategy in heterogeneous population," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Feng, Meiling & Liu, Lijin & Chen, Jiaxing & Xia, Chengyi, 2024. "Heterogeneous propagation processes between awareness and epidemic on signed multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    7. Feng, Meiling & Li, Xuezhu & Zhao, Dawei & Xia, Chengyi, 2023. "Evolutionary dynamics with the second-order reputation in the networked N-player trust game," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    8. Alrebdi, H.I. & Steklain, Andre & Amorim, Edgard P.M. & Zotos, Euaggelos, 2023. "Thermostated Susceptible-Infected-Susceptible epidemic model," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    9. Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    10. Meliksah Turker & Haluk O. Bingol, 2023. "Multi-layer network approach in modeling epidemics in an urban town," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-13, February.
    11. Wu, Qingchu & Kabir, K.M. Ariful, 2023. "Compact pairwise methods for susceptible–infected–susceptible epidemics on weighted heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    12. Huayan Pei & Ying Ding & Guanghui Yan, 2024. "Impact of information adoption and the resulted self-protective actions on epidemic spreading in awareness-disease coupled multiplex networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(5), pages 1-10, May.
    13. Han, Dun & Wang, Xiao, 2023. "Vaccination strategies and virulent mutation spread: A game theory study," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    14. You, Xuemei & Zhang, Man & Ma, Yinghong & Tan, Jipeng & Liu, Zhiyuan, 2023. "Impact of higher-order interactions and individual emotional heterogeneity on information-disease coupled dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    15. Wang, Jingrui & Zhang, Huizhen & Jin, Xing & Ma, Leyu & Chen, Yueren & Wang, Chao & Zhao, Jian & An, Tianbo, 2023. "Subsidy policy with punishment mechanism can promote voluntary vaccination behaviors in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Panicker, Akhil & Sasidevan, V., 2024. "Social adaptive behavior and oscillatory prevalence in an epidemic model on evolving random geometric graphs," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guilherme Ferraz de Arruda & Giovanni Petri & Pablo Martin Rodriguez & Yamir Moreno, 2023. "Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    3. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    4. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Percolation on simplicial complexes," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    5. Zhang, Kebo & Hong, Xiao & Han, Yuexing & Wang, Bing, 2024. "Interplay of simplicial information propagation and epidemic spreading on multiplex metapopulation networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    6. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    8. Ma, Ning & Yu, Guang & Jin, Xin, 2024. "Dynamics of competing public sentiment contagion in social networks incorporating higher-order interactions during the dissemination of public opinion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Martina Contisciani & Federico Battiston & Caterina De Bacco, 2022. "Inference of hyperedges and overlapping communities in hypergraphs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Ramasamy, Mohanasubha & Devarajan, Subhasri & Kumarasamy, Suresh & Rajagopal, Karthikeyan, 2022. "Effect of higher-order interactions on synchronization of neuron models with electromagnetic induction," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    11. Iacopo Iacopini & Márton Karsai & Alain Barrat, 2024. "The temporal dynamics of group interactions in higher-order social networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    13. Li, Jiachen & Li, Wenjie & Gao, Feng & Cai, Meng & Zhang, Zengping & Liu, Xiaoyang & Wang, Wei, 2024. "Social contagions on higher-order community networks," Applied Mathematics and Computation, Elsevier, vol. 478(C).
    14. Federico Malizia & Alessandra Corso & Lucia Valentina Gambuzza & Giovanni Russo & Vito Latora & Mattia Frasca, 2024. "Reconstructing higher-order interactions in coupled dynamical systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Linus Nyiwul, 2021. "Epidemic Control and Resource Allocation: Approaches and Implications for the Management of COVID-19," Studies in Microeconomics, , vol. 9(2), pages 283-305, December.
    17. Gong, Chang & Li, Jichao & Qian, Liwei & Li, Siwei & Yang, Zhiwei & Yang, Kewei, 2024. "HMSL: Source localization based on higher-order Markov propagation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    18. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    19. McKenna, Claire & Chalabi, Zaid & Epstein, David & Claxton, Karl, 2010. "Budgetary policies and available actions: A generalisation of decision rules for allocation and research decisions," Journal of Health Economics, Elsevier, vol. 29(1), pages 170-181, January.
    20. Keliger, Dániel & Horváth, Illés, 2023. "Accuracy criterion for mean field approximations of Markov processes on hypergraphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922009134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.