Investigation of traffic-driven epidemic spreading by taxi trip data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2023.129298
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen Xie & Dexin Yu & Xiaoyu Zheng & Zhuorui Wang & Zhongtai Jiang, 2021. "Revealing spatiotemporal travel demand and community structure characteristics with taxi trip data: A case study of New York City," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-21, November.
- Jürgen Hackl & Thibaut Dubernet, 2019. "Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models," Future Internet, MDPI, vol. 11(4), pages 1-14, April.
- Yongjie Wang & Maolin Li, 2021. "Optimization Algorithm Design for the Taxi-Sharing Problem and Application," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, August.
- Daniel Silver & Thiago H Silva, 2021. "A Markov model of urban evolution: Neighbourhood change as a complex process," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-29, January.
- Oleguer Sagarra & Michael Szell & Paolo Santi & Albert Díaz-Guilera & Carlo Ratti, 2015. "Supersampling and Network Reconstruction of Urban Mobility," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
- Yang, Jin-Xuan, 2020. "The spreading of infectious diseases with recurrent mobility of community population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
- Qian, Xinwu & Ukkusuri, Satish V., 2021. "Connecting urban transportation systems with the spread of infectious diseases: A Trans-SEIR modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 185-211.
- Liu, Jielun & Ong, Ghim Ping & Pang, Vincent Junxiong, 2022. "Modelling effectiveness of COVID-19 pandemic control policies using an Area-based SEIR model with consideration of infection during interzonal travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 25-47.
- Shao, Qi & Han, Dun, 2022. "Epidemic spreading in metapopulation networks with heterogeneous mobility rates," Applied Mathematics and Computation, Elsevier, vol. 412(C).
- Fan Gao & Jinjun Tang & Zhitao Li, 2022. "Effects of spatial units and travel modes on urban commuting demand modeling," Transportation, Springer, vol. 49(6), pages 1549-1575, December.
- Chengbin Peng & Xiaogang Jin & Ka-Chun Wong & Meixia Shi & Pietro Liò, 2012. "Collective Human Mobility Pattern from Taxi Trips in Urban Area," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-8, April.
- Krause, Cory M. & Zhang, Lei, 2019. "Short-term travel behavior prediction with GPS, land use, and point of interest data," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 349-361.
- Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Wenjie & Li, Jiachen & Nie, Yanyi & Lin, Tao & Chen, Yu & Liu, Xiaoyang & Su, Sheng & Wang, Wei, 2024. "Infectious disease spreading modeling and containing strategy in heterogeneous population," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wu, Aoping & Hu, Lu & Li, Dongjie & Zhu, Juanxiu & Shang, Pan, 2024. "A Queue-SEIAR model: Revealing the transmission mechanism of epidemics in a metro line from a meso level," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
- Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
- Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
- Saturnino Luz & Masood Masoodian, 2022. "Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
- Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
- Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021.
"Optimal Lockdown in a Commuting Network,"
American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
- Pablo Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2020. "Optimal Lockdown in a Commuting Network," NBER Working Papers 27441, National Bureau of Economic Research, Inc.
- Fajgelbaum, Pablo D. & Khandelwal, Amit & Kim, Wookun & Khandelwal, Cristiano & Schaal, Edouard, 2020. "Optimal Lockdown in a Commuting Network," 2020: Economic Implications of COVID-19, December 14-15, Virtual Platform 339364, International Agricultural Trade Research Consortium.
- Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2020. "Optimal lockdown in a commuting network," Economics Working Papers 1727, Department of Economics and Business, Universitat Pompeu Fabra.
- Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2020. "Optimal Lockdown in a Commuting Network," Working Papers 2020-36, Princeton University. Economics Department..
- Pablo Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2020. "Optimal Lockdown in a Commuting Network," Departmental Working Papers 2010, Southern Methodist University, Department of Economics.
- Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2020. "Optimal Lockdown in a Commuting Network," Working Papers 1187, Barcelona School of Economics.
- Schaal, Edouard & Fajgelbaum, Pablo & Khandelwal, Amit & Kim, Wookun & Mantovani, Cristiano, 2020. "Optimal Lockdown in a Commuting Network," CEPR Discussion Papers 14923, C.E.P.R. Discussion Papers.
- Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
- Bisin, Alberto & Moro, Andrea, 2022.
"Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique,"
Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
- Alberto Bisin & Andrea Moro, 2021. "Spatial-SIR with Network Structure and Behavior: Lockdown Rules and the Lucas Critique," Papers 2103.13789, arXiv.org, revised Apr 2022.
- Alberto Bisin & Andrea Moro, 2021. "Spatial-SIR with Network Structure and Behavior: Lockdown Rules and the Lucas Critique," NBER Working Papers 28932, National Bureau of Economic Research, Inc.
- Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
- Chen, Yong & Geng, Maosi & Zeng, Jiaqi & Yang, Di & Zhang, Lei & Chen, Xiqun (Michael), 2023. "A novel ensemble model with conditional intervening opportunities for ride-hailing travel mobility estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
- Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
- Situ, Xinyi, 2024. "From mobility to crime: Collective patterns of human mobility and gun violence in Baltimore City," Journal of Criminal Justice, Elsevier, vol. 94(C).
- Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
- Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Xie, Meiling & Li, Yuhan & Feng, Minyu & Kurths, Jürgen, 2023. "Contact-dependent infection and mobility in the metapopulation SIR model from a birth–death process perspective," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
- Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
- Thompson, C.A. & Saxberg, K. & Lega, J. & Tong, D. & Brown, H.E., 2019. "A cumulative gravity model for inter-urban spatial interaction at different scales," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
- Xiaoyan Mu & Anthony Gar-On Yeh & Xiaohu Zhang, 2021. "The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year," Environment and Planning B, , vol. 48(7), pages 1955-1971, September.
- Hector Eduardo Roman & Fabrizio Croccolo, 2021. "Spreading of Infections on Network Models: Percolation Clusters and Random Trees," Mathematics, MDPI, vol. 9(23), pages 1-22, November.
More about this item
Keywords
Epidemic spreading; Human mobility; Markov process; Taxi data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008531. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.